期刊文献+

非线性双曲型方程的混合有限元两层网格算法 被引量:1

Two-Grid Scheme for the Mixed Finite Element Approximations of Nonlinear Hyperbolic Equations
下载PDF
导出
摘要 针对一类非线性双曲型方程,利用混合有限元法,构造了1种混合有限元两层网格算法,给出了两网格方法的误差分析.结果表明,当两层网格算法所选取的粗网格和细网格步长满足H=!(h1/2)时,能获得渐近最优的离散逼近解.并用数值例子验证了该混合有限元两层网格算法的有效性. A combination method of mixed finite element method and two-grid scheme is constructed for solving numerically the two-dimensional nonlinear hyperbolic equations. Error estimate are derived in detail. It is shown that two grid algorithm achieve asymptotically optimal approximation of discrete solution as long as the mesh sizes satisfy H =O( h^1/2). Numerical example is presented to verify the efficiency and accuracy of the proposed numerical algorithm.
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2016年第3期1-6,共6页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(91430104 11271145) 广东省自然科学基金项目(2015A030313643) 华南师范大学研究生创新基金项目(2015lkxm03)
关键词 非线性双曲型方程 混合有限元 两层网格算法 误差分析 nonlinear hyperbolic equations mixed finite element method two-grid algorithm error estimate
  • 相关文献

参考文献24

  • 1WIRZ H J,SCHUTYER F D,TURI A. An implicit, com- pact, finite difference method to solve hyperbolic equa- tions [ J ]. Mathematics and Computers in Simulation, 1977,19 : 241-261.
  • 2KABANIKHIN S I. A finite-difference method of finding the coefficients of a hyperbolic equation [ J ]. USSR Com- putational Mathematics and Mathematical Physics, 1979, 19 : 150-159.
  • 3DUPONT T. L2 estimates for Galerkin methods for second order hyperbolic equations [ J ]. Siam Journal on Numerical Analysis, 1973,10(5) :880-889.
  • 4BAKER G A. Error estimates for finite element methods for second order hyperbolic equations[ J] .Siam Journal on Numerical Analysis, 1976,13(4) :564-576.
  • 5KUMAR S, NATARAJ N, PANI A K. Finite volume ele- ment method for second order hyperbolic equations [ J ]. International Journal of Numerical Analysis & Modeling, 2008,5(1) :132-151.
  • 6CHEN C J,LIU W. A two-grid method for finite volume element approximations of second-order nonlinear hyper-bolic equations [ J] .Journal of Computational and Applied Mathematics, 2010,233 ( 11 ) : 2975-2984.
  • 7BABUSKA I. Error bounds for finite element method [ J ]. Numerische Mathematik, 1971,16 : 322-333.
  • 8BREZZI F. On the existence, uniqueness and approxima- tion of saddle-point problems arising from Lagrangian multipliers [ J ]. Siam Journal on Numerical Analysis, 1974,8 : 129-151.
  • 9FALK R S, OSBORN J E. Error estimations for mixed methods[ J] .RAIRO Analyse Numerique, 1980, 14: 249- 277.
  • 10RAVIART P A, THOMAS T M. A mixed finite element method for second order elliptic problems [ M ]// GALLI- GAM I,MAGENES E. Mathematical aspects of FEM. Ber- lin : Springer, 1977,606 : 292-315.

二级参考文献1

同被引文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部