期刊文献+

一类非线性热方程的时间周期解

Time Periodic Solution to A Nonlinear Heat Equation
下载PDF
导出
摘要 考虑一个边界上具有活塞项的非线性热方程的时间周期解问题,其中活塞项是一个时间周期函数.在过去的几十年,含有各种非线性源项的非线性扩散方程的齐次Dirichlet边值或Neumann边值问题的研究已经取得了丰富的成果,但对含有时间周期边界问题的研究很少.文中分别考虑了次线性、线性以及超线性情形下的周期解存在性,利用不动点方法和拓扑度方法,首先对次线性、线性情形,对任意的边值证明了大时间周期解的存在性;而对超线性情形,证明了当边值适当小时时间周期解的存在性. A nonlinear heat equation with a piston on the boundary is discussed,where the piston term is a timeperiodic function. In the past several decades,the study of time periodic solutions for all kinds nonlinear diffusion equations with nonlinear sources have achieved fruitful results,but there are very few results for the study of the diffusion equations with time periodic boundary. The linear,sublinear and superlinear cases are studied respectively,and it is shown that for the sublinear case and linear case,there always exists time periodic solution for any piston;while for the superlinear case,time periodic solution exists when the boundary value is small.
作者 邓键 尹景学
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2016年第3期14-17,2,共4页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11471127 11371153) 广东省高等学校优秀青年教师培育计划项目(HS2015007) 2015年广东省普通高校青年创新人才项目(2015KQNCX019) 广州市珠江科技新星专项基金项目(2013J2200064) 华南师范大学青年教师培育基金项目(2012KJ001)
关键词 时间周期解 活塞 存在性 time periodic solution piston existence
  • 相关文献

参考文献11

  • 1SEIDMAN T I.Periodic solutions of a non-linear parabolic equation[J]. Journal of Differential Equations, 1975, 19 (2) :242-257.
  • 2BELTRAMO A, HESS P.On the principal eigenvalue of a periodic-parabolic operatorI J ]. Communications in Par- tial Differential Equations, 1984, 9:919-941.
  • 3ESTEBAN M J.On periodic solutions of superlinear para- bolic problems [ J ]. Transactions of the American Mathe- matical Society, 1986, 293 ( 1 ) : 171 - 189.
  • 4ESTEBAN M J.A remark on the existence of positive peri- odic solutions of superlinear parabolic problems [ J ]. Pro- ceedings of the American Mathematical Society, 1988, 102(1) :131-136.
  • 5QUITTNER P. Multiple equilibria, periodic solutions and a priori bounds for solutions in superlinear parabolic prob- lems[ J]. Nonlinear Differential Equations and Applica- tions, 2004, 11(2) :237-258.
  • 6DENG J. Existence of positive radial solutions for a non- linear elliptic problem in annulus domains[ J]. Mathemat- ical Methods in the Applied Sciences, 2012, 35 ( 13 ) : 1594-1600.
  • 7HIRANO N, MIZOGUCHI N. Positive unstable periodic solutions for superlinear parabolic equations [ J ]. Procee- dings of the American Mathematical Society, 1995, 123 (5) :1487-1495.
  • 8GIGA Y, MIZOGUCHI N. On time periodic solutions of the Dirichlet problem for degenerate parabolic equations of nondivergence type [ J ]. Journal of Mathematical Analy- sis and Applications, 1996, 201(2) : 396-416.
  • 9MIZOGUCHI N. Periodic solutions for degenerate diffu- sion equations[J]. Indiana University Mathematics Jour- nal,1995, 44(2): 413-432.
  • 10YIN J X, JIN C H. Periodic solutions of the evolutionary p-Laplaeian with nonlinear sources [ J ]. Journal of Mathe- matical Analysis and Applications, 2010, 368(2) : 604-622.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部