期刊文献+

L_1极小化问题的一种Gauss-Seidal算法

Gauss-Seidal Algorithm to L_1 Minimization
下载PDF
导出
摘要 采用罚函数法与Gauss-Seidal算法相结合的思想研究求解L1极小化问题的数值算法:把L1正则化问题视为对L1极小化问题的一种罚函数,由于该函数是非光滑函数,采用光滑化函数对其进行光滑逼近;在此基础上,对此无约束光滑极小化问题采用Gauss-Seidal迭代法求其某种形式的非精确解;再通过合理调整罚参数和光滑化参数,使得算法产生点列收敛于L1极小化问题的解;最后,通过数值试验测试文中算法的效果,并从数值计算角度与已有算法进行比较,结果表明,文中算法具有很好的数值效果. The numerical method for solving the L1 minimization problem is studied. The penalty method and the Gauss-Seidal iteration technique are adopted to develop the method. The L1 regularization problem is regarded as a penalized L1 minimizationproblem. Taking into account that the L1 norm function is nonsmooth,a smoothing function is adopted as an approximation to it. Then a smooth unconstrained optimization problem is solved inexactly via Gauss-Seidal iteration. At last,the penalty parameter is adjusted in an appropriate way so that the generated sequence of iterates converges to a solution of the L1 minimization problem. The proposed method is tested by numerical experiments,and its performance is compared with some existing methods. The results show that the proposed method is practically effective.
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2016年第3期32-36,共5页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11371154)
关键词 线性方程组稀疏解 L1极小化 外点罚函数 Gauss-Seidal迭代 sparse solution of the system of linear equations L1norm minimization problem penalty function Gauss-Seidal iteration
  • 相关文献

参考文献1

二级参考文献48

  • 1Cands E, Tao T. Near optimal signal recovery from random projections: universal encoding strategies [J]. IEEE Transactions on Information Theory, 2006, 52(1): 5406-5425.
  • 2Donoho D. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52, 1289-1306.
  • 3Natarajan B K. Sparse approximate solutions to linear systems [J]. SIAM Journal on Com- puting, 1995, 24: 227-234.
  • 4Cohen A, Dahmen W, DeVore R A. Compressed sensing and best k-term approximation [J]. Journal of the American Mathematical Society, 2009, 22: 211-231.
  • 5Rudelson M, Vershynin R. Geometric approach to error correcting codes and reconstruction of signals [J]. International Mathematical Research Notices, 2005, 64: 4019-4041.
  • 6Compressive Sensing Resources. http://dsp.rice.edu/cs.
  • 7Donoho D, Huo X. Uncertainty principles and ideal atomic decompositions [J]. IEEE Trans- actions on Infor*mation Theory, 2001, 47: 2845-2862.
  • 8Gribonval R, Nielsen M. Sparse representations in unions of bases [J]. IEEE Transactions on Information Theory, 2003, 49(12): 3320-3325.
  • 9Zhang Y. A simple proof for recoverability of gl-minimization: go over or under? [R]. Rice University CAAM Technical Report TR05-09, 2005.
  • 10Kashin B S. Diameters of certain finite-dimensional sets in classes of smooth functions [J]. Izv. Akad. Nauk SSSR, Ser. Mat., 1977, 41(2): 334-351.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部