期刊文献+

Characterization of Genome-Wide Microsatellites of Saccharina japonica Based on a Preliminary Assembly of Illumina Sequencing Reads 被引量:2

Characterization of Genome-Wide Microsatellites of Saccharina japonica Based on a Preliminary Assembly of Illumina Sequencing Reads
下载PDF
导出
摘要 Microsatellites or simple sequence repeats(SSR) function widely and locate dependently in genome. However, their characteristics are often ignored due to the lack of genomic sequences of most species. Kelp(Saccharina japonica), a brown macroalga, is extensively cultured in China. In this study, the genome of S. japonica was surveyed using an Illumina sequencing platform, and its microsatellites were characterized. The preliminarily assembled genome was 469.4 Mb in size, with a scaffold N_(50) of 20529 bp. Among the 128370 identified microsatellites, 90671, 25726 and 11973 were found in intergenic regions, introns and exons, averaging 339.3, 178.8 and 205.4 microsatellites per Mb, respectively. These microsatellites distributed unevenly in S. japonica genome. Mononucleotide motifs were the most abundant in the genome, while trinucleotide ones were the most prevalent in exons. The microsatellite abundance decreased significantly with the increase of motif repeat numbers, and the microsatellites with a small number of repeats accounted for a higher proportion of the exons than those of the intergenic regions and introns. C/G-rich motifs were more common in exons than in intergenic regions and introns. These characteristics of microsatellites in S. japonica genome may associate with their functions, and ultimately their adaptation and evolution. Among the 120140 pairs of designed microsatellite primers, approximately 75% were predicted to be able to amplify S. japonica DNA. These microsatellite markers will be extremely useful for the genetic breeding and population evolution studies of kelp. Microsatellites or simple sequence repeats(SSR) function widely and locate dependently in genome. However, their characteristics are often ignored due to the lack of genomic sequences of most species. Kelp(Saccharina japonica), a brown macroalga, is extensively cultured in China. In this study, the genome of S. japonica was surveyed using an Illumina sequencing platform, and its microsatellites were characterized. The preliminarily assembled genome was 469.4 Mb in size, with a scaffold N_(50) of 20529 bp. Among the 128370 identified microsatellites, 90671, 25726 and 11973 were found in intergenic regions, introns and exons, averaging 339.3, 178.8 and 205.4 microsatellites per Mb, respectively. These microsatellites distributed unevenly in S. japonica genome. Mononucleotide motifs were the most abundant in the genome, while trinucleotide ones were the most prevalent in exons. The microsatellite abundance decreased significantly with the increase of motif repeat numbers, and the microsatellites with a small number of repeats accounted for a higher proportion of the exons than those of the intergenic regions and introns. C/G-rich motifs were more common in exons than in intergenic regions and introns. These characteristics of microsatellites in S. japonica genome may associate with their functions, and ultimately their adaptation and evolution. Among the 120140 pairs of designed microsatellite primers, approximately 75% were predicted to be able to amplify S. japonica DNA. These microsatellite markers will be extremely useful for the genetic breeding and population evolution studies of kelp.
出处 《Journal of Ocean University of China》 SCIE CAS 2016年第3期523-532,共10页 中国海洋大学学报(英文版)
基金 financially supported by National High Technology Research and Development Program(863 Program)of China(2012AA10A406) National Science and Technology Supporting Program of China(2012 BAD55G01) Municipal Science and Technology Research and Development Project of Yantai(2013LGS002) Shandong Province Higher Educational Science and Technology Program(J15LE14)
关键词 基因组特征 表征 组装 测序 微卫星位点 基因间隔区 简单重复序列 基因组序列 Saccharinajaponica genome microsatellite characterization
  • 相关文献

参考文献39

  • 1Allentoft, M. E., Schuster, S. C., Holdaway, R. N., Hale, M. L., McLay, E., Oskam, C., Gilbert, M. T. P., Spencer, P., Wilier- slev, E., and Bunce, M., 2009. Identification of microsatellites from an extinct moa species using high-throughput (454) se- quence data. BioTechniques, 46: 195-200.
  • 2Armbrust, E. V., Berges, J. A., Bowler, C., Green, B. R., Marti- nez, D., Putnam, N. H., Zhou, S., Allen, A. E., Apt, K. E., Bechner, M., Brzezinski, M. A., Chaal, B. K., Chiovitti, A., Davis, A. K., Demarest, M. S., Detter, J. C., Glavina, T.,Goodstein, D., Hadi, M. Z., Hellsten, U., Hildebrand, M., Jenkins, B. D., Jurka, J., Kapitonov, V. V., Kr6ger, N., Lau, W. W., Lane, T. W., Latimer, F. W., Lippmeier, J. C., Lucas, S., Medina, M., Montsant, A., Obornik, M., Parker, M. S., Palenik, B., Pazour, G. J., Richardson, P. M., Rynearson, T. A., Saito, M. A., Schwartz, D. C., Thamatrakoln, K., Valentin, K., Vardi, A., Wilkerson, F. P., and Rokhsar, D. S., 2004. The ge- nome of the diatom Thalassiosira Pseudonana: Ecology, evolution and metabolism. Science, 306: 79-86.
  • 3Baldauf, S. L., 2008. An overview of the phylogeny and diver- sity of eukaryotes. Journal of Systematics and Evolution, 46: 263 -273.
  • 4Bowler, C., Allen, A. E., Badger, J. H., Grimwood, J., Jabbari, K., Kuo, A., Maheswari, U., Martens, C., Maumus, F., Otillar, R. P., Rayko, E., Salamov, A., Vandepoele, K., Beszteri, B., Gruber, A., Heijde, M., Katinka, M., Mock, T., Valentin, K., Verret, F., Berges, J. A., Brownlee, C., Cadoret, J. P., Chiovitti, A., Choi, C. J., Coesel, S., De Martino, A., Detter, J. C., Durkin, C., Falciatore, A., Fournet, J., Haruta, M., Huysman, M. J., Jenkins, B.D., Jiroutova, K., Jorgensen, R. E., Joubert, Y., Kaplan, A., Kr6ger, N., Kroth, E G., La Roche, J., Lindquist, E., Lommer, M., Martin-J6z6quel, V., Lopez, P. J., Lucas, S., Mangogna, M., McGinnis, K., Medlin, L. K., Montsant, A., Oudot-Le Secq, M. E, Napoli, C., Obornik, M., Parker, M. S., Petit, J. L., Porcel, B. M., Poulsen, N., Robison, M., Rychlewski, L., Rynearson, T. A., Schmutz, J., Shapiro, H., Siaut, M., Stanley, M., Sussman, M. R., Taylor, A. R., Vardi, A., von Dassow, P., Vyverman, W., Willis, A., Wyrwicz, L. S., Rokhsar, D. S., Weissenbach, J., Armbrust, E. V., Green, B. R., Van de Peer, Y., and Grigoriev, I. V., 2008. The Phaeo- dactylum genome reveals the evolutionary history of diatom genomes. Nature, 456: 239-244.
  • 5Cai, G. H., Leadbetter, C. W., Muehlbauer, M. F., Molnar, T. J., and Hillman, B. I., 2013. Genome-wide microsatellite identi- fication in the fungus Anisogramma anomala using illumina sequencing and genome assembly. PLOS ONE, 8: e82408, DOI: 10.1371/journal.pone.0082408.
  • 6Castoe, T. A., Poole, A. W., Gu, W. J., de Koning, A. P. J., Daza, J. M., Smith, E. N., and Polock, D. D., 2010. Rapid identifi- cation of thousands of copperhead snake (Agkistrodon con- tortrix) microsatellite loci from modest amounts of 454 shot- gun genome sequence. Molecular Ecology Resources, 10: 341-347.
  • 7Cock, J. M., Sterck, L., Rouz6, E, Scornet, D., Allen, A. E., Amoutzias, G., Anthouard, V., Artiguenave, F., Aury, J. M., Badger, J. H., Beszteri, B., Billiau, K., Bonnet, E., Bothwell, J. H., Bowler, C., Boyen, C., Brownlee, C., Carrano, C. J., Charrier, B., Cho, G. Y., Coelho, S. M., Coll6n, J., Con'e, E., Da Silva, C., Delage, L., Delaroque, N., Dittami, S. M., Doulbeau, S., Elias, M., Farnham, G., Gachon, C. M., Gschloessl, B., Heesch, S., Jabbari, K., Jubin, C., Kawai, H., Kimura, K., Kloareg, B., Kiipper, F. C., Lang, D., Le Bail, A., Leblanc, C., Lerouge, E, Lohr, M., Lopez, P. J., Martens, C., Maumus, F., Michel, G., Miranda-Saavedra, D., Morales, J., Moreau, H., Motornura, T., Nagasato, C., Napoli, C. A., Nel- son, D. R., Nyvall-Coll6n, E, Peters, A. F., Pommier, C., Po- tin, E, Poulain, J., Quesneville, H., Read, B., Rensing, S. A., Ritter, A., Rousvoal, S., Samanta, M., Samson, G., Schroeder, D. C., S6gurens, B., Strittmatter, M., Tonon, T., Tregear, J. W., Valentin, K., von Dassow, P., Yamagishi, T., Van de Peer, Y., and Wincker, E, 2010. The Ectocarpus genome and the inde- pendent evolution of multicellularity in brown algae. Nature, 465: 617-621.
  • 8Excoffier, L., and Lischer, H. E. L., 2010. Arlequin suite ver 3.5A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Re- sources, 10: 564-567.
  • 9Gall, Y. L., Brown, S., Marie, D., Mejjad, M., and Kloareg, B., 1993. Quantification of nuclear DNA and G-C content in ma- rine macroalgae by flow cytometry of isolated nuclei. Proto- plasma, 173: 123-132.
  • 10Gemayel, R., Vinces, M. D., Legendre, M., and Verstrepen, K. J., 2010. Variable tandem repeats accelerate evolution of coding and regulatory sequences. Annual Review of Genetics, 44: 445-477.

同被引文献27

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部