期刊文献+

基于EKF的多机载传感器误差精确估计 被引量:4

Exact Estimation of Airborne Multi-sensor Bias with Extended Kalman Filter
下载PDF
导出
摘要 基于固定多传感器误差估计EX方法,针对机载平台存在姿态角系统误差的问题,采用拓展卡尔曼滤波对非线性量测方程线性化近似,利用相同的随机点目标,在对目标的状态估计和误差估计之间的协方差不做近似的情况下实现它们的解耦合,提出了一种改进的多机载传感器系统误差精确估计(EEX)方法。仿真结果表明,相对于MLRM方法,EEX方法估计精度提升了近30%。通过目标状态估计得到的传感器误差伪测量的加性噪声都是零均值和方差已知的高斯白噪声,使得估计结果非常接近Cramer-Rao下界(CRLB),说明此估计方法是一个充分估计。 Based on EX algorithm for error estimation of fixed multiple sensors,and considering the Euler angle bias of the airborne sensor,we proposed an improved error estimation algorithm,named as EEX,for estimating the error of airborne multi-sensor system exactly.Extended Kalman Filer(EKF) was used to linearize the non-linear measurement equation.The same random point targets were used,the decoulpling between the target state estimation and the sensor bias estimation was achieved without approximating the cross-covariance between the state estimate and the bias estimate.Simulation results show that: compared with MLRM method,EEX algorithm improves the estimation accuracy by nearly 30%.In addition,the additive noises of pseudo-measurements of the sensor bias obtained through state estimation are all white Gaussian noise with zero-mean and known variance,thus the estimation result is very close to the CramerRao Lower Bound(CRLB),which means that the proposed estimation is statistically efficient.
出处 《电光与控制》 北大核心 2016年第6期21-26,共6页 Electronics Optics & Control
基金 国防"九七三"项目(6132052014)
关键词 多传感器数据融合 机载传感器 姿态角误差 误差估计 拓展卡尔曼滤波 CRAMER-RAO下界 multi-sensor data fusion airborne sensor Euler angle bias bias estimation EKF CRLB
  • 相关文献

参考文献13

  • 1NIEDFELDT P C,BEARD R W.Multiple target tracking using recursive RANSAC[C]//American Control Confe- rence ( ACC),Portland,Oregon,USA,2014:3393-3398.
  • 2VAN DOORN B A,BLOM HAP.Systematic error esti- mation in multisensor fusion systems[C]//Proceedings of SPIE Conference on Signal and Data Processing of Small Targets,1993.
  • 3BAR-SHALOM Y,LI X R.Multitarget-multisensor track- ing:principles and techniques[M].Storrs,CT:YBS Pub- lishing,1995.
  • 4BAR-SHALOM Y.Multitarget-multisensor tracking:appli- cations and advances,Vol.III[M].Dedham,MA:Artech House,1992.
  • 5OKELLO N,RISTIC B.Maximum likelihood registration for multiple dissimilar sensors[J].IEEE Transactions on Aerospace and Electronic Systems,2003,39(3):1074-1083.
  • 6LIN X,BAR-SHALOM Y,KIRUBARAJAN T.Exact mul- tisensor dynamic bias estimation with local tracks[J].IEEE Transactions on Aerospace and Electronic Systems,2004,40(2):576-590.
  • 7LIN X,KIRUBARAJAN T,BAR-SHALOM Y.Multisensor bias estimation using local tracks without a priori associa- tion[C]//Optical Science and Technology,SPIE,48th Annual Meeting.International Society for Optics and Pho- tonics,2003:334-345.
  • 8崔亚奇,宋强,何友.基于改进EX的机动雷达误差配准算法[J].宇航学报,2011,32(4):903-910. 被引量:5
  • 9IGNAGNI M B.Separate bias Kalman estimator with bias state noise[J].IEEE Transactions on Automatic Control,1990,35(3):338-341.
  • 10JONSDOTTIR I,HAUKSDOTTIR A S.Integrity monito- ring and estimation of systematic errors in radar systems[C]//Proceedings of IEEE International Radar Confe- rence,1995.

二级参考文献33

共引文献23

同被引文献46

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部