期刊文献+

一类奇异p-Laplacian方程正解的唯一性 被引量:6

Uniqueness of Positive Solutions for a Class of Singular p-Laplacian Problem
下载PDF
导出
摘要 研究了一类奇异p-Laplacian方程,利用变分方法,获得了该方程的一个全局极小值点.然后,利用解的定义克服了奇异产生的困难,证明了这个全局极小值点为方程的正解.进一步,证明了该方程正解的唯一性. A class of singular p-aplacian problem is considered,by the variational methods,aglobal minimizer is obtained.Consequently,the global minimizer of the corresponding energy functional is a solution of this problem,which is proved by the definition of the solution.This overcomes the difficulty of the singular term.Moreover,the uniqueness of positive solutions is obtained.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第6期45-49,共5页 Journal of Southwest University(Natural Science Edition)
基金 贵州省科学技术科学基金项目(LKZS[2014]22 LH[2015]7049 LH[2015]7595.) 国家自然科学基金项目(11471267)
关键词 p-Laplacian问题 奇异 正解 唯一性 p-Laplacian problem singularity positive solution uniqueness
  • 相关文献

参考文献11

  • 1LAZER A C,MCKENNA P J.On a Singular Nonlinear Elliptic Boundary-Value Problem[J].Proc Amer Math Soc,1991,111(3):721-730.
  • 2DEL PINO M A.A Global Estimate for the Gradient in a Singular Elliptic Boundary Value Problem[J].Proc Roy Soc Edinburgh (Sect A),1991,122(3):341-352.
  • 3SUN Y J,WU S P.An Exact Estimate Result for a Class of Singular Equations with Critical Exponents[J],J Funct A- nal,2011,260(5):1257-1284.
  • 4廖家锋,吴行平.一类奇异半线性椭圆方程解的存在性(英文)[J].西南大学学报(自然科学版),2008,30(2):10-14. 被引量:5
  • 5PERERA K,SILVA E.Existence and Multiplicity of Positive Solutions for Singular Quasilinear Problems[J].J Math Anal Appl,2006,323(2):1238-1252.
  • 6ZHAO L,HE Y,ZHAO P H.The Existence of Three Positive Solutions of a Singular p-Laplacian Problem[J].Nonlin- ear Anal,2011,74(16):5745-5753.
  • 7HAI D D.On a Class of Singular p-Laplacian Boundary Value Problems[J].J Math Anal Appl,2011,383(2):619-626.
  • 8雷春雨,唐春雷.一类渐近p-线性的p-拉普拉斯方程的多解性[J].西南师范大学学报(自然科学版),2014,39(4):15-18. 被引量:4
  • 9陈清明,李春,欧增奇.拟线性椭圆方程在近共振处解的多重性[J].西南大学学报(自然科学版),2014,36(8):87-91. 被引量:2
  • 10VAZQUEZ J L.A Strong Maximum Principle for Some Quasilinear Elliptic Equations[J].Appl Math Optim,1984,12(1):191-202.

二级参考文献28

  • 1[1]Stuart Charles A.Existence and Approximation of Solutions of Non-Linear Elliptic Equations[J].Math Z,1976,147(1):53-63.
  • 2[2]Crandall M G,Rabinowitz P H,Tartar L.On a Dirichlet Problem with a Singular Nonlinearity[J].Comm Partical Differential Equations,1977,2(2):193-222.
  • 3[3]Coclite M M,Palmieri G.On a Singular Nonlinear Dirichlet Problem[J].Comm Partical Differential Equations,1989,14(10):1315-1327.
  • 4[4]Lazer A C,Mckenna P J.On a Singular Nonlinear Elliptic Boundary-Value Problem[J].Proc Amer Math Soc,1991,111(3):721-730.
  • 5[5]Lair A V,Shaker A W.Classical and Weak Solutions of a Singular Elliptic Problem[J].J Math Anal Appl,1997,221(2):371-385.
  • 6[6]Zhang Zhijun.On a Dirichlet Problem with Singular Nonlinearity[J].J Math Anal App,1995,194(1):103-113.
  • 7[7]Choi Y S,Lazere A C,Mckenna P J.Some Remarks on a Singular Elliptic Boundary Value Problem[J].Nonlinear Anal,1998,32(3):305-314.
  • 8[8]Canino A.Minimax Methods for Singular Elliptic Equations with an Application to a Jumping Problem[J].J Differential Equations,2006,221(1):210-223.
  • 9[9]Canino A.Degiovanni M.A Variational Approach to a Class of Singular Semilinear Elliptic Equations[J].J Convex Anal,2004,11(1):147-162.
  • 10[10]Szulkin A.Minimax Principles for Lower Semicontinuous and Application to Nonlinear Boundary Value Problems[J].Ann Inst H Poincaré Anal Non Linéaire,1986,3(2):77-109.

共引文献8

同被引文献21

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部