期刊文献+

基于局部轮廓视觉特征提取的铜金属的杂质检测方法 被引量:1

Copper metal impurity detection method based on local contour visual feature extraction
下载PDF
导出
摘要 采用计算机视觉图像处理技术实现铜金属的杂质检测,提高检测精度,提出一种基于局部轮廓视觉特征提取的铜金属的杂质检测方法。对采集的铜金属原材料图像进行局部轮廓视觉特征提取,对图像进行小波阈值滤波,采用Harris角点检测方法进行图像的杂质成分点标记,实现对图像的杂质噪点优化检测。仿真结果表明,采用该方法进行图像处理和铜金属杂质检测,精度较高,图像的平滑性较好。 Proposed a method based on the local contour visual feature extraction of copper metal impurities detection method. The acquisition of copper metal raw material image were local contour visual feature extraction, image wavelet threshold filtering, image of impurity composition marked by Harris corner detection method, impurity noise on image detection optimization. The simulation results show that the method is used for image processing and copper metal impurity detection, with higher accuracy and better image smoothness.
作者 王娟
机构地区 南阳理工学院
出处 《世界有色金属》 2016年第5期185-186,共2页 World Nonferrous Metals
关键词 局部轮廓 视觉特征提取 铜金属 图像处理 local profile visual feature extraction copper metal image processing
  • 相关文献

参考文献2

二级参考文献27

  • 1徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J].遥感学报,2005,9(5):589-595. 被引量:1438
  • 2YE C M, LI J, HAN L, et al. The research of water information extraction techniques based on remote sensing [C]// Proceedings of the 2011 IEEE 3rd International Conference on Communication Software and Networks. Piscataway, NJ: IEEE, 2011: 403-406.
  • 3SCHUMANN G, HOSTACHE R, PUECH C, et al. High-resolution 3-D flood information from radar imagery for flood hazard management [J]. IEEE transactions on geoscience and remote sensing, 2007, 45(6): 1715-1725.
  • 4LI N, WANG R, LIU Y, et al. Robust river boundaries extraction of dammed lakes in mountain areas after Wenchuan earthquake from high resolution SAR images combining local connectivity and ACM [J]. ISPRS journal of photogrammetry and remote sensing, 2014, 94(4): 91-101.
  • 5RUNDQUIST D, LAWSON M, QUEEN L, et al. The relationship between the timing of summer-season rainfall events and lake-surface area [J]. LAWRA journal of American water resources association, 1987, 23(3): 493-508.
  • 6BARTON I J, BATHOLS J M. Monitoring floods with AVHRR [J]. Remote sensing of environment, 1989, 30(1): 89-94.
  • 7MCFEETERS S K. The use of Normalized Difference Water Index (NDWI) in the delineation of open water features [J]. International journal of remote sensing, 1996, 17(7): 1425-1432.
  • 8FU Y, XING K, HUANG Y, et al. Recognition of bridge over water in high-resolution remote sensing images [C]// Proceedings of the 2009 WRI World Congress on Computer Science and Information Engineering. Piscataway, NJ: IEEE, 2009: 621-625.
  • 9YUE Y, GONG J, WANG D. The extraction of water information based on SPOT5 image using object-oriented method [C]// Proceedings of the 2010 18th International Conference on Geoinformatics. Piscataway, NJ: IEEE, 2010: 1-5.
  • 10WANG H, PAN L, HONG Z. Multi-texture-model for water ex-traction based on remote sensing image [C]// CISP'08: Proceedings of the 2008 Congress on Image and Signal Processing. Piscataway, NJ: IEEE, 2008: 710-714.

共引文献31

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部