期刊文献+

应用格子Boltzmann方法直接数值模拟研究钢中夹杂物上浮及碰撞行为

Direct numerical simulation of inclusion floating and collision behavior in molten steel using the lattice Boltzmann method
原文传递
导出
摘要 采用格子Boltzmann方法对钢液中夹杂物上浮及上浮过程中的碰撞行为进行直接数值模拟研究.结果表明,不同尺寸夹杂物颗粒上浮速度的模拟结果和理论值基本一致,表明本文所采用的数值算法能够精确有效地对钢液中固相夹杂物颗粒运动行为进行研究.当钢液中直径为80μm的夹杂物颗粒位于直径为40μm的下方并一起上浮时,直径为80μm的夹杂物颗粒会逐渐追赶上直径为40μm的夹杂物颗粒并发生碰撞形成大尺寸凝聚体,凝聚体的上浮速度显著大于二者单独上浮时的上浮速度.对于直径为40μm的夹杂物来说,形成凝聚体后的上浮速度比单独上浮时的上浮速度增加300%.实际炼钢过程中,采取必要的措施增加夹杂物颗粒之间上浮过程中的碰撞凝聚,对于提高夹杂物颗粒的上浮速度,尤其是小尺寸夹杂上浮去除速度,提高钢液的洁净度具有重要的意义. The floating and collision behavior of inclusions in the floating process was numerically simulated by using the Lattice Boltzmann method. It is found that the floating velocity simulation results of different size inclusion particles are almost the same as the theoretical value,which demonstrates that the motion behavior of solid inclusion particles can be investigated concisely and effectively by using the numerical algorithm adopted in this paper. When an inclusion particle with a diameter of 80 μm locates below an inclusion particle with a diameter of 40 μm and floats up at the same time,the inclusion particle with a diameter of 80 μm can catch up with the inclusion particle with a diameter of 80 μm,collide with each other and grow up into a big inclusion cluster. When the inclusion particles with diameters of 80 μm and 40 μm floats up separately,the floating velocity of the inclusion cluster is bigger than them. For the inclusion particle with a diameter of 40 μm,the floating velocity after collision with the bigger size inclusion particle increases by300% compared with that of floating separately. In the steelmaking process,it is necessary to take measures to enhance collision and coagulation in the floating process,which will improve the floating velocity of inclusions especially for small size inclusions and have a great importance on the cleanliness of steel.
出处 《工程科学学报》 EI CSCD 北大核心 2016年第5期644-649,共6页 Chinese Journal of Engineering
基金 国家自然科学基金资助项目(51074020)
关键词 夹杂物去除 上浮 碰撞 直接数值模拟 inclusions removal floating collision direct numerical simulation
  • 相关文献

参考文献12

  • 1Rege R A, Szekeres E S, Forgeng W D. Three-dimensional view of alumina clusters in aluminum-killed low-carbon steel. Metall Mater Trans B, 1970, 1(9) : 2652.
  • 2Doo W C, Kim D Y, Kang S C, et al. Measurement of the 2-di- mensional fractal dimensions of alumina clusters formed in an ultra low carbon steel melt during RH process. ISIJ lnt, 2007,47 ( 7 ) : 1070.
  • 3Tozawa H, Kato Y, Sorimachi K, et al. Aggtomeration and tloata- tion of alumina cluster in molten steel. 1SIJ Int, 1999, 39 ( 5 ) : 126.
  • 4张邦文,李保卫,刘中兴.连铸中间包钢液中夹杂物颗粒运动轨迹的数值模拟[J].包头钢铁学院学报,1999,18(2):125-129. 被引量:7
  • 5张邦文,邓康,雷作胜,任忠鸣.连铸中间包中夹杂物聚合与去除的数学模型[J].金属学报,2004,40(6):623-628. 被引量:33
  • 6Lei H, He J C. A dynamic model of alumina inclusion collision growth in the continuous caster. J Non Cryst Solids, 2006, 352 (36-37) : 3772.
  • 7Ladd A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation: Part 1. Theoretical foundation. J Fluid Mech, 1994, 271 : 285.
  • 8Ladd A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation: Part 2. Numerical results. J Fluid Mech, 1994, 271 : 311.
  • 9Aidun C K, Lu Y, Ding E J. Direct analysis of particulate sus- pensions with inertia using the discrete Boltzmann equation. J Fluid Mech, 1998, 373 : 287.
  • 10Liou T M, Lin C T. Study on microchannel flows with a sudden contraction-expansion at a wide range of Knudsen number using lattice Bohzmann method. Microfluid Nanofluid, 2014, 16 ( l ) : 315.

二级参考文献40

  • 1李保卫,贺友多.顶吹转炉内金属液滴的产生、运动及传热的数学模型[J].金属学报,1995,31(4). 被引量:5
  • 2LIU Sheng, LUO Xiao-bing. LED Packaging for Lighting Applications: Design, Manufactur- ing and Testing[ M]. USA: John Wiley & Sons, 2011.
  • 3Zukauskas A, Shur M S, Caska R. Introduction to Solid-State Lighting[ M]. New York, USA: John Wiley & Sons, 2002.
  • 4Pimputkar S, Speck J S, DenBaars S P, Nakamura S. Prospects for LED lighting[ J]. Nature Photonics, 2009, 3(4): 180-182.
  • 5HU Run, YU Shan, ZOU Yong, ZHENG Hai, WANG Fei, LIU Sheng, LUO Xiao-bing. Near-/mid-field effect of color mixing for single phosphor-converted light-emitting diode package [J]. IEEE Photonics Technology Letters, 2013, 25(3): 246-249.
  • 6Dupuis A, Yeomans J M. Lattice Boltzmann modeling of droplets on chemically heterogeneous surfaces[J]. Future Generation Computer Systems, 2004, 20(5): 993-1001.
  • 7Yan Y Y, Zu Y Q. A lattice Boltzmann method for incompressible two-phase flows on partial wetting surface with large density ratio [ J ]. Journal of Computational Physics, 2007, 227 (1) : 763-775.
  • 8Inamuro T, Ogata T, Tajima S, Konishi N. A lattice Boltzmann method for incompressible two-phase flows with large density differences[ J]. Journal of Computational Physics, 2004, 198(2) : 628-544.
  • 9Briant A J, Papatzacos P, Yeomans J M. Lattice Boltzmann simulations of contact line motion in a liquid-gas system[ J]. Philosophical Transactions of the Royal Society of London, Series A, 2002, 360(1792) : 485-495.
  • 10SHAN Xiao-wen, CHEN Hu-dong. Lattice Boltzmann model for simulating flows with multiple phases and components [ J ]. Physical Review E, 1993, 47 ( 3 ) : 1815-1819.

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部