期刊文献+

基于LDA与WordNet方法的微博排序

Ranking Sensitive Topics in a Micro-blog Based on LDA and WordNet Method
下载PDF
导出
摘要 微博搜索排序是近年来微博研究的热点之一。对于任意一个话题,它内容的生产者很容易达到成千上万个,甚至更多,产生的微博数更是不计其数,同时,也给关键字搜索的微博排序提出了更大的挑战。因此,本文提出了基于话题的用户权威值计算方法、基于WordNet的内容语义相似度方法,以及基于LDA的方法将输入关键词和所召回微博与其所属话题相关联,使用LearningToRank监督学习方法,学习一种排序策略。在此基础上,对提出的方案在实际数据集上分别对用户话题权威性、微博内容语义相似度、以及综合排序因素进行验证。 Microblog ranking is one of the hot research area in recent years. For any one topic, it is easy to reach thousands of producers or even more, the number of micro-blogs is countless, but also it comes with a greater challenge during searching keywords in micro-blog. In view of this, we proposed to incorporate topical authority of user, content similarity based on WordNet and topical relevance based on LDA algorithm between search keywords and microblogs that recalled to enhance the performance of microblog ranking with learning to rank related algorithm. On this basis, the user's topic authority,micro-blog content semantic similarity as well as the integrated ranking factors in a proposed project were verified on the actual data set.
作者 聂丁
出处 《山东农业大学学报(自然科学版)》 CSCD 2016年第3期469-472,共4页 Journal of Shandong Agricultural University:Natural Science Edition
关键词 微博排序 语义相似度 特征拟合 Microblog ranking semantic similarity feature fitting
  • 相关文献

参考文献7

  • 1Blei DM, Ng AY, Jordan MI. Latent dirichlet allocation[J]. Journal of machine Learning research, 2003(3):993-1022.
  • 2Griffiths TL, Steyvers M. Finding scientific topics[J]. Proceedings of the National academy of Sciences of the United States of America, 2004,101 (S 1):5228-5235.
  • 3王晟,王子琪,张铭.个性化微博推荐算法[J].计算机科学与探索,2012,6(10):895-902. 被引量:22
  • 4Friedman JH. Stochastic gradient boosting[J]. Computational Statistics & Data Analysis, 2002,38(4):367-378.
  • 5Mahinthan V, Rutagemwa H, Mark JW, et al. Cross-layer performance study of cooperative diversity system with ARQ[J]. IEEE Transactions on Vehicular Technology, 2009,58(2):705-719.
  • 6Resnik P. Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language[J]. Sensor Fusion & Decentralized Control in Robotic Systems Ili, 2011,11 (1):95-130.
  • 7时晓飞.从最小省力原则来看微博[J].才智,2014,0(1):309-309. 被引量:1

二级参考文献22

  • 1Weng J, Lim E, Jiang J, et al. TwitterRank: finding topicsensitive influential twitterers[C]//Proceedings of the 3rd ACM International Conference on Web Search and Data Mining (WSDM '10). New York, NY, USA: ACM, 2010: 261-270.
  • 2Cha M, Haddadi H, Benevenuto F, et al. Measuring user influence in Twitter: the million follower fallacy[C]//Proceedings of the 4th International AAAI Conference on Weblogs and Social Media (ICWSM 2010), 2010: 10-17.
  • 3Qazvinian v, Rosengren E, Radev D, et al. Rumor has it:identifying misinformation in microblogs[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP ' 11). Stroudsburg, PA, USA: Association for Computational Linguistics, 2011: 1589-1599.
  • 4Grove F, Sen S. TwitAg: a multi-agent feature selection and recommendation framework for Twitter[C]//LNCS 7057: Proceedings of the 13th International Conference on Principles and Practice of Multi-Agent Systems (PRIMA '10). Berlin, Heidelberg: Springer-Verlag, 2012: 394-397.
  • 5Rendle S, Freudenthaler C, Gantner Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence (UAI '09). Arlington, Virginia, USA: AUAI Press, 2009: 452-461.
  • 6Hannon J, McCarthy K, Smyth B. Finding useful users on Twitter: twittomender the followee recommender[C]// LNCS 6611: Proceedings of the 33rd European Conference on Information Retrieval (ECIR 2011). Berlin, Heidelberg: Springer-Verlag, 2011: 784-787.
  • 7Hannon J, Bennett M, Smyth B. Recommending Twitter users to follow using content and collaborative filtering approaches[C]//Proceedings of the 4th ACM Conference on Recommender Systems (RecSys ' 10). New York, NY, USA: ACM, 2010: 199-206.
  • 8Zangerle E, Gassier W, Specht G. Using tag recommendations to homogenize folksonomies in microblogging envi- ronments[C]//Proceedings of the 3rd International Conference on Social Informatics (Soclnfo 2011), 2011: 113-126.
  • 9Phelan O, McCarthy K, Smyth B. Using Twitter to recommend real-time topical news[C]//Proceedings of the 3rd ACM Conference on Recommender Systems (RecSys '09).New York, NY, USA: ACM, 2009: 385-388.
  • 10Phelan O, McCarthy K, Bennett M, et al. Terms of a featurecontent-based news recommendation and discovery using Twitter[C]//Proceedings of the 33rd European Conference on Advances in Information Retrieval (ECIR ' 11). Berlin, Heidelberg: Springer-Verlag, 2011: 448-459.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部