期刊文献+

长链烷氧基芳香醇凝胶因子的合成及性能 被引量:3

Synthesis and Properties of Organogels Based on Aromatic Alcohol Derivatives
下载PDF
导出
摘要 为了研究有机凝胶的溶剂效应,合成了单链烷氧基芳香醇系列化合物S-C12、S-C14、S-C16及三链化合物T-C14。测试了它们的凝胶性能并分析了侧链的影响。阴离子测试结果表明,该系列凝胶化合物可以对氟离子刺激作出响应。运用扫描电子显微镜观察并分析了凝胶的微观形貌,并通过核磁共振光谱及红外光谱研究了系列化合物的成胶驱动力。红外光谱中,溶液状态下游离态羟基吸收波数(3 673 cm^(-1))较凝胶状态下(3 651cm^(-1))发生了蓝移,由此证明氢键是凝胶形成的重要驱动力。计算了凝胶因子S-C14及14种有机溶剂的梯氏参数并绘制了梯氏图,获得S-C14在有机溶剂中形成凝胶的预测区域,并对该预测区域的有效性进行了验证。采用Kamlet-Taft参数法分析并明确了溶剂得失氢键能力以及溶剂极性对所合成化合物凝胶性能的影响,并利用文献报道的系列凝胶因子对所得结论的一致性进行了验证。 Aromatic alcohol derivatives containing single alkoxy chain( S-C12,S-C14,S-C16) and three alkoxy chains( T-C14) were synthesized to study the solvent effect of organogels. The gelation properties of compounds were tested and the influences of side chains on them were evaluated. Anion test showed that the series of gels could respond to fluorinion stimulation. The microstructure of gels and the driving force of gelation were investigated by SEM,1HNMR and FTIR,respectively. In FTIR spectrum,compared to gelation state( 3 651 cm^-1),the free state hydroxy absorption wave number of solution state was 3 673 cm^-1,this blue shift proved that hydrogen was an important driving force of gel formation. Teas parameters of S-C14 and fourteen organic solvents were calculated and a Teas plot was constructed. The validity of two expected gelation domains in the Teas plot was verified. Kamlet-Taft method was used to investigate the donating-accepting ability of intermolecular hydrogen bonding of the solvents and the influence of polarisability of solvents on the gelling performance of the compounds. A series of reported gelators was used to prove the conclusions from Kamlet-Taft method.
出处 《精细化工》 EI CAS CSCD 北大核心 2016年第6期601-607,619,共8页 Fine Chemicals
基金 天津市自然科学基金(15JCYBJC20100)~~
关键词 有机凝胶 分子间氢键 溶剂效应 梯氏参数法 Kamlet-Taft参数法 阴离子响应 功能材料 organogels intermolecular hydrogen bonds solvent effect Teas parameter Kamlet-Taft parameter anionic response functional materials
  • 相关文献

参考文献4

二级参考文献142

  • 1顾雪蓉(Gu XR),朱育平(ZhuYP).凝胶化学(Gel Chemistry).北京:化学工业出版社(Shanghai:Chemical Industry Press),2005.
  • 2Vemula P, John G. Ace. Chem. Res. , 2008, 41 : 769-782.
  • 3Li J, WangR, Liu X, Pan H. J. Phys. Chem. B, 2009, 113: 5011-5015.
  • 4EstroffL, Hamilton A. Chem. Rev., 2004, 104:1201-1218.
  • 5Van Bommel K, Friggeri A, Shinkai S. Angew. Chem. Int. Ed. , 2003, 42:980-999.
  • 6Jung J, Shinkai S. Topics in Current Chemistry, 2004, 248: 223-260.
  • 7Bao C, Lu R, Jin M, Xue P, Tan C, Xu T, Liu G, Zhao Y. Chem. Eur. J. , 2006, 12:3287-3294.
  • 8Bao C, Lu R, Jin M, Xue P, Tan C, Liu G, Zhao Y. Org. Biomol. Chem., 2005, 3:2508-2512.
  • 9Jung J H, Ono Y, Sakurai K, Sano M, Shinkai S. J. Am. Chem. Soc. , 2000, 122:8648-8653.
  • 10Kumar J, Neckers D. Chem. Rev., 1989, 89:1915-1925.

共引文献16

同被引文献9

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部