期刊文献+

基于缺口应力法的焊接接头疲劳分析 被引量:14

FATIGUE ANALYSIS OF WELDED JOINTS BASED ON NOTCH STRESS METHOD
原文传递
导出
摘要 等效缺口应力法作为焊接疲劳分析的一种局部方法,不仅克服了焊接结构名义应力难以确定和焊根结构应力无法定义的困难,而且能够反映焊接局部后处理对焊接接头疲劳强度的影响,因此近年来备受关注。该文建立了典型焊接接头的三维缺口应力模型,对焊趾根部的缺口应力集中系数进行了求解;通过对对接接头和纵向角接头在焊后未处理(AS-weld)和超声喷丸处理(UPT)两种状态下的疲劳试验数据进行分析处理,获得了两种焊接接头在缺口应力系统下统一的S-N曲线,并与目前国际焊接学会所推荐的具有相同存活率的疲劳寿命曲线(IIW:m=3,FAT=225)进行比较,结果表明,该曲线具有更高的疲劳等级和更低的斜度。 The notch stress method (NSM) is a local method of welding fatigue analysis, which has attracted much attention in recent years. Traditionally, the nominal stresses in welded structures are difficult to determine and the weld root stress cannot be defined, but NSM can not only successfully overcome these problems but also assess the effects of welded joint fatigue strength with local welding post-processing. In this paper, 3D notch stress models of typical welded joints are presented to solve the notch stress concentration factors (nSCF) in a weld toe. Some fatigue test data from butt joints and longitudinal fillet joints are referenced from literature, which include two conditions: As-weld and ultrasonic peening treatment(UPT); then unified S-N curves under notch stress system are obtained by combining the nSCF and fatigue data. Compared to the referenced fatigue-life curve of International Institute of Welding (IIW: m=3, FAT=225) at the same survival probability, it shows that these fitting curves have higher fatigue classes and shallower slopes.
出处 《工程力学》 EI CSCD 北大核心 2016年第6期209-214,249,共7页 Engineering Mechanics
基金 国家自然科学基金项目(51205324)
关键词 焊接接头 疲劳等级 缺口应力法 S-N曲线 超声喷丸处理 welded joint fatigue class notch stress method S-N curve UPT
  • 相关文献

参考文献3

二级参考文献42

  • 1WangDongpo HuoLixing WangTing LiJie ZhangYufeng.EFFECT OF MEAN STRESS ON FATIGUE PERFORMANCE OF WELDED JOINTS TREATED BY UPT[J].Chinese Journal of Mechanical Engineering,2004,17(4):531-533. 被引量:5
  • 2付德龙,张莉,程靳.基于塑性应变能的多轴低周疲劳寿命预测模型[J].工程力学,2007,24(3):54-57. 被引量:5
  • 3Karolczuk A, Macha E. A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials [J]. International Journal of Fracture, 2005, 134(3): 267-304.
  • 4Jiang Y. A fatigue criterion for general multiaxial loading [J]. Fatigue and Fracture of Engineering Materials and Structures, 2000, 23(1): 19-32.
  • 5Jiang Y, Hertel O, Vormwald M. An experimental evaluation of three critical plane multiaxial fatigue criteria [J]. International Journal of Fatigue, 2007, 29(8): 1490- 1502.
  • 6Chu C C. Multiaxial fatigue life prediction method in the ground vehicle industry [J]. International Journal of Fatigue, 1997, 19(93): 325-330.
  • 7Li B, Reis L, de Freitas M. Simulation of cyclic stress/strain evolutions for multiaxial fatigue life prediction [J]. International Journal of Fatigue, 2006, 28(5-6): 451-458.
  • 8Ye D, Hertel O, Vormwald M. A unified expression of elastic-plastic notch stress-strain calculation in bodies subjected to multiaxial cyclic loading [J]. International Journal of Solids and Structures, 2008, 45(24): 6177- 6189.
  • 9Firat M, Kozan R, Ozsoy M, Mete O H. Numerical modeling and simulation of wheel radial fatigue tests [J]. Engineering Failure Analysis, 2009, 16(5): 1533-1541.
  • 10Jiang Y, Xu B. Deformation analysis of notched components and assessment of approximate methods [J]. Fatigue and Fracture of Engineering Materials and Structures, 2001, 24(11): 729-740.

共引文献28

同被引文献97

引证文献14

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部