期刊文献+

基于阈值优化的压电微动平台迟滞模型

The Hysteresis Model of Piezoelectric Micro-positioning Stage Based on Threshold Optimization
下载PDF
导出
摘要 为减少PI迟滞模型的无效算子数,进而提高模型的运算速度,采用阈值优化法来改进PI迟滞模型。采用PI迟滞模型拟合被描述对象的实测曲线时,实测曲线在各阈值点处的斜率可用该点处迟滞算子的权重和来表达,该权重和越接近该点曲线的斜率,PI迟滞模型的精度就越高。这样便可在保证模型精度满足要求并使其在各阈值点处相同的情况下,对模型的阈值进行优化,进而减少模型的算子数。根据测得的最大实测升程曲线,基于阈值优化法,建立了压电微动平台的迟滞模型。实验结果表明,所建模型算子数仅为7个,且不含无效算子;在0~15.94μm的位移范围内,所建模型的误差变化范围为0.23~0.40μm,即1.4%~2.5%。所建模型可较好地描述压电微动平台的迟滞非线性。 In order to reduce the number of invalid operators of PI hysteresis model,and to improve the operation speed of the model,the threshold optimization method is adopted to improve the PI model.When PI hysteresis model is used to fit the measured curves of an object,the slope of the measured curve can be expressed by the weight sum of the operator at each threshold point,the smaller difference between the weight sum and the curve slope,the higher accuracy of the PI hysteresis model.In this way,the threshold of PI hysteresis model can be optimized,and the operator number can be reduced,when the model accuracy meets the requirements and the accuracy is same at each threshold.According to the maximum measured lifting curve,the hysteresis model of a piezoelectric micro-positioning stage is established based on the threshold optimization method.The experimental results show that the numbers of the model operators are only 7,and they do not contain the invalid operators;within the displacement range of 0~15.94μm,the error range of the model is 0.23~0.40μm,that is 1.4%~2.5%.The model can better describe the hysteresis nonlinearity of the piezoelectric micro-positioning stage.
出处 《压电与声光》 CAS CSCD 北大核心 2016年第3期437-440,共4页 Piezoelectrics & Acoustooptics
基金 国家自然科学基金资助项目(51175271) 教育部留学回国人员科研启动基金资助项目 浙江省高等学校中青年学科带头人学术攀登基金资助项目(Pd2013091)
关键词 微动平台 压电执行器 迟滞模型 阈值优化 micro-positioning stage piezoelectric actuator hysteresis model threshold optimization
  • 相关文献

参考文献9

  • 1HASSANI V,TJAHJOWIDODO T,DO T N.A survey on hysteresis modeling,identification and control[J].Mechanical Systems and Signal Processing,2014,49(1/2):209-233.
  • 2JUHSZ L,MAAS J,BOROVAC B.Parameter identification and hysteresis compensation of embedded piezoelectric stack actuators[J].Mechatronics,2011,21(1):329-338.
  • 3陈辉,谭永红,周杏鹏,张亚红,董瑞丽.压电陶瓷执行器的动态模型辨识与控制[J].光学精密工程,2012,20(1):88-95. 被引量:39
  • 4李黎,刘向东,侯朝桢,赖志林.基于不对称指数函数迟滞算子的压电陶瓷执行器动态Preisach迟滞模型[J].中国机械工程,2009(12):1468-1472. 被引量:6
  • 5PENG J Y,CHEN X B.Novel models for one-sided hysteresis of piezoelectric actuators[J].Mechatronics,2012,22(6):757-765.
  • 6WOLF F,SUTOR A,RUPITSCH S J,et al.Modeling and measurement of creep-and rate-dependent hysteresis in ferroelectric actuators[J].Sensors and Actuators,2011,172(1):245-252.
  • 7张桂林,张承进,李康.基于PI迟滞模型的压电驱动器自适应辨识与逆控制[J].纳米技术与精密工程,2013,11(1):85-89. 被引量:20
  • 8LIU Xiangdong,WANG Ying,GENG Jie,et al.Modeling of hysteresis in piezoelectric actuator based on adaptive filter[J].Sensors and Actuators,2013,189:420-428.
  • 9PARK Y W,SEOK Y T,PARK H J,et al.Hysteresis modeling based on saturation operator without constraints[J].Journal of Magnetism and Magnetic Materials,2007,310(2):2647-2649.

二级参考文献49

  • 1王岳宇,赵学增.补偿压电陶瓷迟滞和蠕变的逆控制算法[J].光学精密工程,2006,14(6):1032-1040. 被引量:38
  • 2解淑英,张承进.一种输入饱和受限系统的自适应逆控制[J].山东大学学报(工学版),2006,36(6):62-66. 被引量:1
  • 3刘向东,刘宇,李黎.一种新广义Preisach迟滞模型及其神经网络辨识[J].北京理工大学学报,2007,27(2):135-138. 被引量:2
  • 4林伟,冯海,张南纶.压电陶瓷致动器的动态控制模型及逻辑规则控制[J].纳米技术与精密工程,2007,5(1):60-63. 被引量:4
  • 5Holman A E , Scholte P, Heerens W C, et al. Analysis of Piezo Actuators in Translation Constructions [J]. Review of Scientific Instruments, 1995, 66(5) :3208-3215.
  • 6Ben M R, Hu H. A Model for Voltage-to-displacement Dynamics in Piezoceramic Actuators Subject to Dynamic-voltage Excitations[J]. IEEE Transactions on Mechatronics, 2002, 7(4): 479-489.
  • 7Yu Y, Xiao Z, Naganathan N G, et al. Dynamic Preisach Modeling of Hysteresis for the Piezoceramic Actuator System[J]. Mechanism and Machine Theory, 2002,37:75-89.
  • 8Song D, Jame L C. Modeling of Piezo Actuator's Nonlinear and Frequency Dependent Dynamics [J]. Mechatronics, 1999,9 (4): 391-410.
  • 9Wei T A, Francisco A G, Pradeep K K, et al. Modeling Rate-dependent Hysteresis in Piezoelectric Actuators[C]//Proceeding of the IEEE/RSJ International Conference on the Intelligent Robots and Systems. Las Vegas, 2003 : 1975-1980.
  • 10Liu Xiangdong, Xiu Chunbo. A Novel Hysteretic Chaotic Neural Network and Its Applications[J]. Neurocomputing, 2007,70 : 2561-2565.

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部