期刊文献+

立方体卫星制动帆装置离轨时间分析 被引量:4

De-orbiting Time Analysis on Drag Sail Device of CubeSat
下载PDF
导出
摘要 为了避免立方体卫星(CubeSat)失效后成为空间碎片,在立方体卫星寿命末期应采用低成本制动帆装置使其快速脱离轨道,从而减少对低地球轨道(LEO)航天器碰撞和损坏的威胁。文章建立了立方体卫星离轨的数学模型,得到立方体卫星离轨时间的影响因素分别为立方体卫星面质比、轨道高度和发射日期。应用实例仿真分析上述3种影响因素对离轨时间的影响,结果表明:随着立方体卫星面质比的增加,离轨时间不断减少;轨道高度越高,离轨时间越长;发射日期不同,离轨时间也存在较大的差异,在太阳活动峰年时离轨时间短,在太阳活动低年时离轨时间长。根据分析结果,对于3U立方体卫星而言,制动帆面积可设计为4m^2。 To avoid a non-functional CubeSat becoming space debris,it is necessary to use a lowcost drag sail device as an end-of-life disposal which makes the CubeSat deorbit quickly and decreases the threat of collisions and damages to other spacecraft.A CubeSat de-orbiting mathematical model is established,and the factors influencing de-orbiting time are obtained such as areamass radio,orbit altitude and launch date.Some examples are used to analyze these factors,and the simulation results show that the area-mass ratio of CubeSat has high influence on the de-orbiting time.The greater area-mass ratio is,the shorter de-orbiting time is.Also,the de-orbiting time increases as the orbit altitude is increasing.What's more,the de-orbiting time of a CubeSat can vary depending on launch date that high solar activity gives lower de-orbiting time and low solar activity gives longer de-orbiting time.According to the results of the analysis,a drag sail device with a deployed areas of 4m^2 is designed for a 3U CubeSat.
出处 《航天器工程》 北大核心 2016年第3期26-31,共6页 Spacecraft Engineering
基金 江苏省普通高校研究生科研创新计划项目(KYLX15_0343)
关键词 立方体卫星 制动帆装置 离轨时间 面质比 轨道高度 发射日期 CubeSat drag sail device de-orbiting time area-mass radio orbit altitude launch date
  • 相关文献

参考文献18

  • 1Bonnal C,Ruault J M,Desjean M C.Active debris removal:recent progress and current trends[J].Acta Astronautica,2013(85):51-60.
  • 2Ting Wang.Analysis of debris from the collision of the Cosmos 2251and the Iridium 33satellites[J].Science&Global Security,2010,18:87-11.
  • 3Reintsema D,Thaeter J,Rathke A,et al.DEOS―the German robotics approach to secure and de-orbit malfunctioned satellites from low earth orbits[C]//Proceedings of International Symposium on Artificial Intelligence,Robotics and Automation in Space(i-SAIRAS).Cologne:German Aerospace Center,2010:244-251.
  • 4Bouwmeester J,Guo J.Survey of worldwide pico-and nanosatellite missions,distributions and subsystem technology[J].Acta Astronautica,2010(67):854-862.
  • 5Nock K,Gates K,Aaron K,et al.Gossamer Orbit Lowering Device(GOLD)for safe and efficient de-orbit[C]//Proceedings of AIAA/AAS Astrodynamics Specialist Conference.Washington D.C.:AIAA,2010:1-11.
  • 6Lcking C,Colombo C,Mcinnes C.A passive de-orbiting strategy for high altitude CubeSat missions using a deployable reflective balloon[C]//Proceedings of the8th IAA Symposium on Small Satellites.Stockholm:IAA,2011:1-8.
  • 7Hawkins Jr R A.Analysis of an inflatable gossamer device to efficiently de-orbit CubeSats[D].San Luis Obispo:California Polytechnic State University,2013.
  • 8Charlotte L,Camilla C,Colin R,et al.A passive satellite deorbiting strategy for medium earth orbit using solar radiation pressure and the J2effect[J].Acta Astronautica,2012(77):197-206.
  • 9Kentaro Iki,Satomi Kawamoto,Yoshiki Morino.Experiments and numerical simulations of an electrodynamic tether deployment from a spool-type reel using thrusters[J].Acta Astronautica,2014(94):318-327.
  • 10Lappas V,Adeli N,Visagie L,et al.CubeSail:a low cost CubeSat based solar sail demonstration mission[J].Advances in Space Research,2011,48(11):890-901.

二级参考文献12

  • 1杨嘉墀.航天器轨道动力学与控制(上)[M].北京:中国宇航出版社,2005.
  • 2Krueger J K. Closesat: perigee-lowering techniques and preliminary design for a smaU optical imaging satellite operating in very low earth orbit [ D ]. Cambridge: Massachusetts Institute of Technology, 2010.
  • 3Kuijper D, Matatoros M A G. Goce flight dynamics operations from an orbital perspective [ J ]. Journal of Aerospace Engineering, Sciences and Applications, 2012, 2 (4) : 93 - 106.
  • 4Atsushi N, Masanori H, Masayoshi U. The study of a super low altitude satellite [ C ]. 58th International Astronautical Congress, 2007, IAC -07 - D1.4.06.
  • 5Van Alien, Richard E, James R W. NanoEye-a multi-mission low cost spacecraft [ C ]. Reinventing Space Conference, Los Angeles, CA, May7-11, 2012.
  • 6De Flofio S, D'Amico S. Optimal autonomous orbit control of remote sensing spacecraft [ C ]//Proceedings of the 19th AAS/ AIAA Space Flight Mechanics Meeting, Savannah, USA, 2009:8 - 12.
  • 7Canuto E. Drag-free and attitude control for the GOCE satellite [ J ]. Automatica, 2008, 44 ( 7 ) : 1766 - 1780.
  • 8Masayoshi U, Atsushi N. Orbital maintenance of super low altitude satellite by new frozen orbit [ C ]. The Meeting on the Study of Space Missions Propelled by Low-Thrust and Sustained Acceleration, Tokyo, Japan, Feb 28 - 29, 2008.
  • 9Salama O. Autonomous orbit maintenance law for LEO sun synchronous, earth repeating satellites with electric propulsion system[ C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii, USA, August 18 - 21,2008.
  • 10Fearn D G. Economical remote sensing from a low altitude with continuous drag compensation [ J ]. Acta Astronautica, 2005, 56(5) :555 -572.

共引文献11

同被引文献21

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部