期刊文献+

Triton X-100对氧化亚铁硫杆菌氧化活性及浸出黄铜矿的影响

Effects of Triton X-100 on Oxidative Activity of Acidithiobacillus ferrooxidans and on Chalcopyrite Bioleaching
下载PDF
导出
摘要 为提高黄铜矿的微生物浸出效果,研究了非离子表面活性剂Triton X-100对氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)氧化Fe2+和S0的活性以及浸出黄铜矿的影响,并采用XRD对浸出后的产物进行了表征.结果表明,Triton X-100对氧化亚铁硫杆菌氧化Fe2+有一定的抑制作用,而对氧化S0则显现出促进作用;Triton X-100可显著改善黄铜矿的微生物浸出效果,当其质量浓度为30 mg·L-1时,黄铜矿中铜的浸出率提高了52.15%.Triton X-100的加入提高了氧化亚铁硫杆菌对黄铜矿浸出过程中间产物硫的生物利用性和消解作用,从而提高了浸出体系中细菌浓度和Fe3+浓度,进而促进了黄铜矿的溶解. Triton X - 100 was used to improve the bioleaching of chalcopyrite with Acidithiobacillus ferrooxidans, and its effects on ferrous and sulfur oxidative activities of At. ferrooxidans and bioleaching of chalcopyrite were investigated. Chalcopyrite after bioleaching was characterized by XRD. Results showed that the addition of Triton X - 100 has little negative effect on ferrous-oxidizing activity of At. ferrooxidans, but it is favorable for that of sulfur. The copper extraction yield of chalcopyrite with 30 mg.L-~ Triton X -100 increases by 52. 15 % compared with the bioleaching without Triton X - 100. The elemental sulfur produced during bioleaching of chalcopyrite is efficiently hio-oxidized and dissolved by At. ferrooxidans in the presence of Triton X- 100, consequently increasing concentrations of the bacteria and ferric ion in bioleaching system, thus enhancing the oxidation and dissolution of chalcopyrite.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第6期861-864,879,共5页 Journal of Northeastern University(Natural Science)
基金 国家"十二五"科技支撑计划项目(2012BAB01B03)
关键词 黄铜矿 TRITON X-100 氧化亚铁硫杆菌 生物浸出 单质硫 chalcopyrite Triton X - 100 Acidithiobacillus ferrooxidans bioleaching element sulfur
  • 相关文献

参考文献10

  • 1Watling H R.The bioleaching of sulphide minerals with emphasis on copper sulphides-a review[J].Hydrometallurgy,2006,84(1/2):81-108.
  • 2Klauber C.A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution[J].International Journal of Mineral Processing,2008,86(1/2/3/4):1-17.
  • 3Sasaki K,Nakamuta Y,Hirajima T,et al.Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans[J].Hydrometallurgy,2009,95(1/2):153-158.
  • 4Debernardi G,Carlesi C.Chemical-electrochemical approaches to the study passivation of chalcopyrite[J].Mineral Processing & Extractive Metallurgy Review,2012,34(1):10-41.
  • 5Pistaccio L,Curutchet G,Donati E,et al.Analysis of molybdenite bioleaching by Thiobacillus ferrooxidans in the absence of iron (11)[J].Biotechnology Letters,1994,16(2):189-194.
  • 6Liu W,Yang H Y,Song Y,et al.Catalytic effects of activated carbon and surfactants on bioleaching of cobalt ore[J].Hydrometallurgy,2015,152(1):69-75.
  • 7彭安安,刘红昌,聂珍媛,夏金兰.表面活性剂Tween-80对Acidithiobacillus ferrooxidans硫氧化和硫代谢相关蛋白质基因表达的影响(英文)[J].Transactions of Nonferrous Metals Society of China,2012,22(12):3147-3155. 被引量:8
  • 8蒋金龙,杨勇,卜春文.非离子表面活性剂对细菌浸矿能力的影响[J].淮阴工学院学报,2006,15(1):47-49. 被引量:5
  • 9王树栋,王一波.蛋白质中硫与醚氧之间相互作用本质的量子化学研究[J].贵州科学,2011,29(5):1-4. 被引量:1
  • 10Lan Z Y,Hu Y H,Qin W Q.Effect of surfactant OPD on the bioleaching of marmatite[J].Minerals Engineering,2009,22(1):10-13.

二级参考文献29

  • 1GU, Guohua, SU, Lijun, CHEN, Minglian, SUN, Xiaojun, ZHOU, Hongbo.Bio-leaching effects of Leptospirillum ferriphilum on the surface chemical properties of pyrite[J].Mining Science and Technology,2010,20(2):286-291. 被引量:14
  • 2Burling F.T. , Goldstein B. M. , 1992. Computational studies of nonbonded sulfur-oxygen and selenlum-oxygen interactions in the thiazole and selenazole nucleosides [ J ]. J. Am. Chem. Soc. , 114(7) :2313-2320.
  • 3Brandt W. , Golbraikh A. , Tager M. , Lendeckel. U. , 1999. A molecular mechanism for the cleavage of a disulfide bond as the primary function of agonist binding to G-protein-cou- pled reeeptom based on theoretical calculations supported hy experiments[J]. Eur. J. Biochem. , 261, 89-97.
  • 4Boys S. F. , Bernardi F. , 1970. The calculation of small molecttlar interactions by differences of separate total energies. Some procedures with reduced errors [ J ]. Mol Phys. , 100 ( 1 ) :65-73.
  • 5Gordon M. S. , Schmidt M. W. , 2005. Theory and Applica- tions of Computational Chemistry, the First Forty Years [M]. Elsevier, Amsterdam.
  • 6Iwaoka M. , Takemoto S. , Tomoda S. , 2002. Statistical and theoretical investigations on the directionality of nonbonded S…O interactions, implications for molecular design and protein engineering [ J ]. J. Am. Chem. Soc., 124 ( 35 ) : 10613- 10620.
  • 7Kucsman. , Kapovits I., 1985. In Organic Sulfur Chemistry [ M]. Elsevier, Amsterdam.
  • 8Nagao Y. , Hirata T. , Goto S. , et al. , 1998. Intramoleeular nonbonded S…0 interaction recognized in (Acylimino)thia- diazoline derivativesas angiotensinII receptor antagonistsand related compounds[J]. J. Am. Chem. Soc. , 120(13) :3104- 3110.
  • 9Rosenfield R. E. , Jr. , Parthasarathy R. , Dunitz J. D. , 1977. Directional preferences of nonbonded atomic contacts with di- valent sulfur electmphiles and nucleophiles [ J ]. J. Am. Chem. Soc., 99(14) :4860-4862.
  • 10Su PF, Li H, 2009. Energy decomposition analysis of covalent bonds and intermolecular interactions[ J]. J. Chem. Phys. , 131 (1) :014102-1-15.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部