期刊文献+

一些新的Henry-Gronwall型时滞积分不等式及其在分数阶微分方程中的应用

Some New Henry-Gronwall Type Retarded Integral Inequalities and Their Applications to Fractional Differential Equations
下载PDF
导出
摘要 建立的一些新的Henry-Gronwall型时滞积分不等式,其可以用于研究某些分数阶微分方程. In this paper, we presents some new Henry-Gronwall type retarded integral inequalities, which can be used to study the quaitatine properties of some fractional differential equations.
作者 刘翠红 徐润
出处 《曲阜师范大学学报(自然科学版)》 CAS 2016年第3期23-31,共9页 Journal of Qufu Normal University(Natural Science)
基金 supported by National Science Foundation of China(11171178,11271225)
关键词 积分不等式 分数阶微分方程 Henry-Gronwall型 Integral inequality fractional differential equation Henry-Gronwall type
  • 相关文献

参考文献8

  • 1Henry D. Geometric Theory of Semilinear Parabolic Equations [M]. Lecture Notes in Math, vol. 840.
  • 2New York/Berlin: Springer-Verlag, 1981. Medvec] M. A new approach to an analysis of Henry type integral inequalities and their Bihari type versions [J]. J Math A- nal Appl,1997,214.. 349-366.
  • 3Ye H,Gao J. Henry-Gronwall type retarded integral inequalities and their applications to fractional differential equations with delay [J]- Applied Mathematics and Computation,2011,218: 4152-4160.
  • 4Jing Shao,Fanwei Meng. Gronwall-Bellman Type Inequalities and Their Applications to Fractional Differential Equations [J]. Abstract and Applied Analysis Volume 2013,Article ID 217641,7 pages,http://dx.doi.org/lO.1155/2013/217641.
  • 5Kuczma M. An Introduction to the Theory of Function Equations and Inequalities. Cauchy's Equation and .lensen's Ine- quality [M]. Birkh//user, 2009.
  • 6Podlubny I. Fractional Differential Equations [M]. San Diego:Academic Press, 1999.
  • 7Ye H, Gao J, Ding Y. A generalized Gronwall inequality and its application to a fractional differential equation [J]. J Math Anal Appl, 2007,328 : 1075-1081.
  • 8Feng Q, Meng F. Some new Gronwall-type inequalities arising in the research of fractional differential equations [J]. Jour- nal of Inequalities and Applications 2013,2013:429.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部