期刊文献+

关于双圈图的拟拉普拉斯谱半径的一个猜想的证明

Proof to a Conjecture on the Signless Laplacian Spectral Radius of Bicyclic Graphs
下载PDF
导出
摘要 令q(G)表示图G的拟拉普拉斯谱半径.何春阳和郭曙光(2014)研究了不含三圈的n阶双圈图中拟拉普拉斯谱半径的排序问题,他们猜想"若n≥7,则q(G_(10))<q(G_9)",其中图G_9和G_(10)如图1所示.若该猜想成立,则其最终可以确定不含三圈的n≥12阶双圈图中排在前12位的拟拉普拉斯谱半径,该文证明了该猜想. Let q (G) be the signless Laplacian spectral radius of G. He Chunyang and Guo Shuguang (2014) investigated the ordering problem of signless Laplacian spectral radii of bicyclic graphs with n verti- ces, which contains no triangles, they put forward the conjecture that "if n ≥ 7, then q (Gl0) 〈 q (G9)", where G9 and G10 are shown as in Figure 1. If this conjecture holds,then they have determined the first 12 largest signless Laplacian spectral radii of bicyclic graphs with n≥12 vertices,which contains no triangles. In this paper,the conjecture is proved.
作者 伍超林 李凤
出处 《曲阜师范大学学报(自然科学版)》 CAS 2016年第3期39-41,共3页 Journal of Qufu Normal University(Natural Science)
关键词 双圈图 拟拉普拉斯矩阵 拟拉普拉斯半径 特征多项式 Bicyclic graph signless Laplacian matrix signless Laplacian spectrum characteristic polynomial
  • 相关文献

参考文献5

二级参考文献19

  • 1Bondy J A and Murty U S R. Graph theory with applications. New York: Macmillan, 1976.
  • 2Agaev R P and Chebotarev P Y. Laplace spectra of orgraphs and their applications. Automa- tion and Remote Control, 2005, 5: 719-733.
  • 3Spielman D A. Spectral graph theory and its applications. 48th Annual IEEE Symposium on Foundations of Computer Science, 2007.
  • 4Guo J M. On the second largest Laplacian eigenvalue of trees. Linear Algebra Appl., 2005, 404: 251-261.
  • 5Schwenk A J and Wilson R J. On the eigenvalues of a graph, in: Beineke L W, Wilson R J(Eds.), Selected Topics in Graph Theory. New York: Academic Press, 1978, 307-336.
  • 6Indulal G and Vijayakumar A. On a pair of equienergetic graphs. MATCH Commun. Math. Comput. Chem., 2006: 55: 83-90.
  • 7Brualdi R A, Solheid E S. On the spectral radius of complementary acyclic matrices of zeros and ones[J]. SIAM J Algebra Discrete Methods, 1986, 7: 265-272.
  • 8Nikiforov V. Some new results in extremal graph theory[A], Surveys in Combinatorics[C]. Cambridge: Cambridge University Press, 2011, 141-181.
  • 9Cvetkovid D. Spectral theory of graphs based on the signless Laplacian[R]. Research Report, 2010, available at: http://www.mi.sanu.ac.rs/projects/signless_L_reportApr11.pdf.
  • 10de Freitas M A A, Nikiforov V, Patuzzi L. Maxima of the Q-index: forbidden 4-cycle and 5-cycle[J]. preprint available at arXiv:1308.1652.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部