期刊文献+

N掺杂Mg_xZn_(1-x)O薄膜结构和光学性质研究

Study on Crystal Structures and Optical Properties of Mg_xZn_(1-x)O∶N Thin Films
下载PDF
导出
摘要 采用溶胶-凝胶法在玻璃衬底上制备了N掺杂Mg_xZn_(1-x)O薄膜。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射光谱、光致发光(PL)谱对N掺杂Mg_xZn_(1-x)O薄膜样品的晶体结构、表面形貌和光学性能进行了研究。XRD结果表明所有样品均形成了Mg Zn O合金薄膜,没有观察到其它氧化物的衍射峰。样品的结晶质量越差,样品的表面形貌越不规则,但样品在可见光的透射率越强,甚至达到了95%。样品的禁带宽度随Mg含量的增加而增加,随N含量的增加而减小。所有样品的光致发光谱均观察到强的400 nm发光和弱的可见发光。400 nm的发光强度随Mg含量的增加而减弱,随N含量的增加而增强,认为薄膜在400 nm的发光来源Zn O的激子复合。 The Mg_xZn_(1-x)O ∶ N thin films are fabricated on the glass substrates by sol-gel method.The surface morphologies,crystal structures and optical properties of the films were investigated by scanning electron microscopy(SEM),X-ray diffraction(XRD),transmission spectrum and photoluminescence(PL) spectrum.The XRD results reveal that all the Zn O films are of wurtzite structure.The diffraction peaks of other oxide are not observed in the samples.The crystal quality was lowers,the surface topography of the Zn O films is irregular,but the transmittance in the visible region is increases,and even reaches 95%.The optical band gap increases with the Mg concentration increasing,and decreases with the increase of N concentration.The stronger UV(400 nm) emission and the weaker visible emission peaks are observe in the PL spectra of all the samples.With the increase of N concentration,the UV emission peak enhanced first,and then the UV peak was weakened again,that the UV emissions at 400 nm are attributed to recombination of free excitons in Zn O.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2016年第5期1380-1385,共6页 Journal of Synthetic Crystals
基金 黑龙江省自然科学基金(E201341) 牡丹江师范学院青年项目基金(QN201622 QN201605)
关键词 N掺杂Mg_xZn_(1-x)O 溶胶-凝胶 光致发光 Mg_xZn_(1-x)O∶N sol-gel PL
  • 相关文献

参考文献5

二级参考文献83

  • 1韦志仁,马玲鸾,段光杰,韩伟超,刘清波,强勇,高平,张晓军,.水热法生长的Co、Sn共掺杂ZnO晶体厚膜的顺磁性[J].人工晶体学报,2012(S1):316-320. 被引量:1
  • 2魏志鹏,吴春霞,吕有明,张振中,姚斌,张吉英,赵东旭,李炳辉,申德振,范希武.MgxZn_(1-x)O合金制备及MgZnO/ZnO异质结构的光学性质[J].发光学报,2006,27(5):831-833. 被引量:18
  • 3O. Kluth, G. Schope, J. Hupkes, C. Agashe, J. Muller and B. Rech: Thin Solid Films, 2003, 442, 80.
  • 4S.T. Shishiyanu, T.S. Shishiyanu and O.I. Lupan: Sens. Actuators B Chem., 2005, 107, 379.
  • 5T. Meron and G. Markovich: J. Phys. Chem. B, 2005, 109, 20232.
  • 6K. Wang and Y. Vygranenko: J, Appl. Phys., 2007, 101, 114508.
  • 7N.W. Emanetoglu, C. Gorla, Y, Liu, S. Liang and Y. Lu: Mater. Sci. Semicond. Process., 1999, 2, 247.
  • 8N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi and K. Koumoto: Adv, Mater., 2002, 14, 418.
  • 9A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda and Y. Segawa: Appl. Phys. Lett., 1999, 75, 980.
  • 10H.D. Sun, T. Makino, N.T. Tuan, Y. Segawa, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, K. Tamura and H. Koinuma: Appl. Phys. Lett., 2000, 77, 4250.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部