期刊文献+

基于评分合理因子的协同过滤推荐算法研究

下载PDF
导出
摘要 研究了协同过滤推荐算法中评分矩阵的稀疏性特征,调查并分析了用户评分尺度的差异问题。为了提高过滤推荐算法的推荐精度,采用评分合理因子进行算法的改进,构建基于评分合理因子的协同过滤推荐模型及改进的协同过滤推荐算法RFCF。实验证明,清洗掉评分不合理的用户不能提高预测准确性,反而会使准确性大大降低;而采用评分合理因子修正相似度计算的准确性,可以明显提高预测精度和执行效率,并且在评价矩阵稀疏情况较严重的情况下也能够收到较好的效果。
作者 张震 华钢
出处 《宿州学院学报》 2016年第5期96-99,共4页 Journal of Suzhou University
基金 淮北师范大学校级教研项目"翻转课堂在高校教学中的应用研究"(jy14138)
  • 相关文献

参考文献15

  • 1Nguyen T T,Kluver. Rating support interfaces to improve user experience and recommender accuracy [C]// Hongkong:In Proceedings of the 7th ACM Conference on Recommender Systems, 2013:149-156.
  • 2Sarwar B,Karypis G,Konstan J,et al. Application of Di- mensionality Reduction in Recommender System-A Case Study [EB/OL]. [2016-01-18]. http ://www. docin, corn/ p-1035255326, html.
  • 3Cacheda F,Carneiro V,Fernandez D,et al. Comparison of collaborative filtering algorithms: limitations of current techniques and proposals for scalable, High-Performance recommender systems [J]. ACM Transactions on the Web, 2011,5(1) : 1-33.
  • 4Jung K Y,Hwang H J ,KANG U-g. Constructing full ma- trix through naive bayes for collaborative filtering[C]// Kunming : PROCEEDINGS, 2006 : 1210-1215.
  • 5Konstan J, Miller B, Maltz D. GroupLens: applying collab-orative filtering to Usenet news[J]. Communications of the ACM, 1997,40(3) : 77-87.
  • 6Robles V, Larranaga P, Menalvas E, et al. Improvement of naive bayes collaborative filtering using interval estima- tion[C]//Washington DC:Proceedings of the IEEE/WIC International Conference on Web Intelligence, 2003: 168- 174.
  • 7Sarwar B M. Application of dimensionality reduction in recommender system--a case study[C]//New York:acm webkdd 2000 web mining for e-commerce workshop:acm press, 2000: 82-90.
  • 8Pariser A R, Miranker W. Dimensionality reduction via Self-Organizing feature Maps for collaborative filtering [C]//Orlando:Proceedings of International Joint Confer- ence on Neu'al Networks, 2007 : 1941-1946.
  • 9Abhinandan D,Mayur D,Ashutosh G,et al. Google News Personali zation: Scalable Online Collaborative Filtering [C] //New York : Proceeding of the 16th international conference on World Wide Web, 2007: 271-280.
  • 10Vozalis M G, Margaritis K G. Applying SVD on item- based filtering[C]//Wroclaw Poland :Proceedings of the 5th International Conference on Intelligent System De- sign and Applications,2005:464-469.

二级参考文献9

  • 1Gediminas Adomavicius and Alexander Tuzhilin, "oward the Next Generation of Recommender Systems: A Survey of the State- of-the-Art and Possible Extensions", IEEE Trans. on Knowledge and Data Engineering, vol. 17, no. 6, June 2005 , pp. 734-749.
  • 2Xiaoyuan Su, Taghi M. Khoshgoftaar. A Survey of Collaborative Filtering Techniques". Advances in Artificial Intelligence, Volume 2009, Article ID 421425.
  • 3E. Garcia, "Cosine Similarity and Term Weight Tutorial", http: //www.miislita.com/information -retrievahutorial/cosine -similarity - tutorial.html#Cosim. 2006.
  • 4J. Herlocker, J.A. Konstan , J. Riedl, An Empirical Analysis c Design Choices in Neighborhood-Based Collaborative Filterin Algorithms, Information Retrieval, v.5 n.4, p.287-310, Octobe 2002.
  • 5J. Herlocker, J.A. Konstan, L.G. Terveen and J.T. Riedl,Evaluating ollaborative filtering recommender systems, ACM Transactions on Information Systems (TOIS), v.22 n.1, p.5-53, January 2004.
  • 6M. Hao , K. Irwin and R.L. Michael, Effective missing data prediction for collaborative fihering, Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, July 23 -27, 2007, Amsterdam.
  • 7AHN H J. A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem [J]. Information Sciences; an International Journal, 2008, 178(1): 37-51.
  • 8MovieLens Dataset. http://MovieLens.umn.edu/.
  • 9王晓堤,王屾,赵旭.基于用户可信度聚类的协同过滤推荐模型[J].微计算机信息,2010,26(30):219-221. 被引量:2

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部