期刊文献+

基于线性逼近的车道线弯道识别方法 被引量:15

Novel Lane Curve Detection Method Using Linear Approximation
下载PDF
导出
摘要 为提高车道线识别算法在大曲率弯道下的识别性能,提出一种基于线性逼近的弯道识别方法.基于车道线先验知识,利用改进的局部逆透视变换和Hough变换对车道线进行初步提取.根据初步提取结果,对未知区域进行循环线性逼近并提取车道线边界点.通过最小二乘法利用B-样条曲线完成车道线拟合.实验证明,该算法对大曲率弯道的车道线识别具有较高的精确性. In order to improve the performance of lane detection for curve road,a lane detection system was presented with a linear approximation method. Based on the priori knowledge of lane geometry,some initial edge points of the lane were extracted through inverse perspective mapping and Hough transformation. Considering the initial results,a method of linear approximation was applied to search the future lane edge points. Finally,the detected points were used to rebuild the lane according to a B-spline model using least square method. Test of this system shows a promising detection result for curve lanes.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2016年第5期470-474,共5页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(51005019)
关键词 弯道识别 线性逼近 逆透视变换 HOUGH变换 curve lane detection linear approximation inverse perspective mapping Hough transformation
  • 相关文献

参考文献2

二级参考文献24

  • 1毕雁冰,管欣,詹军.车道识别过程中搜索车道线的方法[J].汽车工程,2006,28(5):439-442. 被引量:7
  • 2金辉,吴乐林,陈慧岩,龚建伟.结构化道路车道线识别的一种改进算法[J].北京理工大学学报,2007,27(6):501-505. 被引量:28
  • 3No hands across America, vision and autonomous systems center at Carnegie Mellon University [EB/OL]. [1999-03-20]. http: //www.ri.cmu.edulresearch_project_ detail.html?proj ect_id= 178& menu id=261.
  • 4LAUER M, GERRITS A. Next steps for the grand cooperative driving challenge [ITS Events] [J]. Intelligent Transportation Systems Magazine, IEEE , 2009, 1(4): 24-32.
  • 5VIAC- the VisLab intercontinental autonomouschallcnge [EB/OL]. [2011-03-05]. http: //viac.vislab.it.
  • 6GUIZZO E. How google's self-driving car works [EB/OL]. [2011-10-18]. http : //spectrum.ieee.org/automaton/ robotics/artificial-intelligence/how-google-self-driving-ca r-works.
  • 7BEHRINGER R, SUNDARESWARAN S, GREGORY B, et al. The DARPA grand challenge - development of an autonomous vehicle[C]//2004 IEEE Intelligent Vehicles Symposium, 14-17 June 2004, Parma, Italy, 2004: 226-231.
  • 8MILLER I, LUPASHIN S, ZYCH N. Comell University's 2005 DARPA grand challenge entry[J]. Journal of Field Robotics, 2006, 23(8): 625-652.
  • 9URMSON C, ANHALT J, BAGNELL D. Autonomous driving in urban environments: Boss and the urban challenge[J]. Journal of Field Robotics, 2008, 25(8): 425-466.
  • 10XIONG Guangming, ZHOU Peiyun, ZHOU Shengyan. Autonomous driving of intelligent vehicle BIT in 2009 future challenge of China[C]//2010 IEEE Intelligent Vehicles Symposium, Proceedings. 21-24 June 2010, San Diego, CA, USA, 2010: 1049- 1053.

共引文献45

同被引文献111

引证文献15

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部