摘要
对任一奇素数p和正整数n,给出满足x^(p-1)≡1(modp^n)的解的一般表达式,推广了华罗庚关于费马解的概念,得到了任意奇素数p都存在无穷多个任意n次费马解及其相关性质.
For p is an odd prime numbers,n is a positive integer. The formula of general solution was given that meet the condition x^p-1≡ 1(modp^n),and the concept of Hua Luogeng about Fermat's solution was promoted. In addition,a conclusion was come to that:there are an infinite Fermat's solutions for any power of n,and the involved nature of Fermat's solution was proved.
出处
《湖南科技大学学报(自然科学版)》
CAS
北大核心
2016年第2期117-121,共5页
Journal of Hunan University of Science And Technology:Natural Science Edition
基金
贵州省教育厅优秀科技创新人才项目(黔教合KY字[2013]153)
湖南省自然科学基金资助项目(14JJ7047)
凯里学院博士教授启动基金项目(BS201309)
关键词
费马解
n次费马解
通解
证明
Fermat's solution
Fermat's solutions for any power of n
general solution
prove