期刊文献+

关于n次费马解通解的探究与证明 被引量:1

Explore and prove about the general solution of Fermat Solution
原文传递
导出
摘要 对任一奇素数p和正整数n,给出满足x^(p-1)≡1(modp^n)的解的一般表达式,推广了华罗庚关于费马解的概念,得到了任意奇素数p都存在无穷多个任意n次费马解及其相关性质. For p is an odd prime numbers,n is a positive integer. The formula of general solution was given that meet the condition x^p-1≡ 1(modp^n),and the concept of Hua Luogeng about Fermat's solution was promoted. In addition,a conclusion was come to that:there are an infinite Fermat's solutions for any power of n,and the involved nature of Fermat's solution was proved.
出处 《湖南科技大学学报(自然科学版)》 CAS 北大核心 2016年第2期117-121,共5页 Journal of Hunan University of Science And Technology:Natural Science Edition
基金 贵州省教育厅优秀科技创新人才项目(黔教合KY字[2013]153) 湖南省自然科学基金资助项目(14JJ7047) 凯里学院博士教授启动基金项目(BS201309)
关键词 费马解 n次费马解 通解 证明 Fermat's solution Fermat's solutions for any power of n general solution prove
  • 相关文献

参考文献7

  • 1[英]西蒙·辛格.费马大定理---个困惑了世间智者358年的谜[M].薛密,译.桂林:广西师范大学出版社,2013:21-25.
  • 2[美]约翰·德比希尔.素数之恋--黎曼和数学中最大的未解之谜[M].陈为蓬,译.上海:上海教育出版社,2005:200.
  • 3华罗庚.数论导引[M].北京:科学出版社,1979..
  • 4[美]阿尔伯特·H·贝勒.数论妙趣--数学女王的盛情款待[M].谈祥柏,译.上海:上海教育出版社,1998:56-58.
  • 5毛卫民.10是487的Fermat解及其在循环小数中的应用[J].湖北师范学院学报(自然科学版),1989(1):40-44. 被引量:1
  • 6罗永超.费马解及其一般求法之定理[J].贵州师范大学学报(自然科学版),1996,14(1):41-46. 被引量:3
  • 7杨昔阳,肖晓羽,李志伟.基于组合数的OWA算子赋权方法[J].湖南科技大学学报(自然科学版),2014,29(3):125-128. 被引量:9

二级参考文献12

  • 1傅种孙.循环小数循环位数问题[J]数学通报,1983(04).
  • 2Yager R R. Families OWA operators [ J ]. Fuzzy Sets and Systems, 1993, 59(2) : 125 - 148.
  • 3Ferretti V, Pomarico S. Ecological land suitability analysis through spatial indicators: An application of the analytic network process technique and ordered weighted average approach[ J ]. Ecological Indicators, 2013 (34) : 507 -519.
  • 4Gorsevski P V, Donevska K R, Mitrovski C D, et al. Integrating multi - criteria evaluation techniques with geographic information systems for landfill site selection: A case study using ordered weighted average [ J ]. Waste Management, 2012, 32(2): 287-296.
  • 5O' Hagan M. Aggregating template rule antecedents in real- time expert systems with fuzzy set logic [ C ] // Proceedings of the 22nd Annual IEEE Asilomar Conference on Signals, Systems, Computers. Pacific Grov, CA :IEEE Computer Society Press, 1988.
  • 6Fuller R, Majlender P. An analytic approach for obtaining maximal entropy OWA operator weights [ J ], Fuzzy Sets and Systems, 2001, 124(1): 53-57.
  • 7Fuller R, Majlender P. On obtaining minimal variability OWA operator weights [ J ]. Fuzzy Sets System. 2003, 136(2) :203 -215.
  • 8Wang Y, Luo Y, Liu X. Two new models for determining OWA operator weights [ J ]. Computers & Industrial Engineering,2007, 52 (2) :203 - 209.
  • 9Wang Y M, Parkan C. A preemptive goal programming method for aggregating OWA operator weights in group decision making [ J ]. Information Sciences, 2007, 177 (8) : 1867 -1877.
  • 10Liu X. The solution equivalence of minimax disparity and minimum variance problems for OWA operators [ J ]. International Journal of Approximate Reasoning ,2007, 45 (1) : 68 -81.

共引文献232

同被引文献12

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部