期刊文献+

热电制冷模块热物性参数理论获取方法及精度分析 被引量:1

Theoretical methods and accuracy analysis for extracting thermophysical parameters of thermoelectric cooling module
下载PDF
导出
摘要 获取精确的热电模块的热物性参数值是热电制冷系统性能分析的关键。制冷量是衡量热电制冷性能的参数,根据厂商数据单以及半导体材料与温度相关的热物性经验公式,绘制了采用常物性参数法、变物性参数法分析制冷量的性能曲线图,并提出通过热电臂内热平衡的微分表达式获得不同工况下制冷量的准确值及标准性能曲线图;通过数值对比分析发现,常物性参数法在计算热电制冷量时有最大约6 W的绝对误差,但可以通过改善常物性参数获取精度减小计算误差;而变物性参数法最大绝对误差仅为1.5 W,该热物性参数获取方法精度较高,适用于分析热电制冷性能。 For exact analysis of cooling ability of thermoelectric cooling system, accurate extraction of thermophysical parameters is of vital importance. Cooling capacity is the measure of system's cooling ability. Based on the datasheet of thermoelectric module and empirical formulas evaluating temperature- dependent parameters, performance curves assuming constant and temperature-dependent material properties were plotted respectively. The standard value of cooling capacity and performance curve were obtained with differential equations for energy conservation along the TE element. Through numerical comparison and analysis, it was found that the maximum absolute error of cooling capacity was 6 W for constant parameters estimated from the datasheet and could be minimized by applying a proper set of constant parameters. The maximum absolute error of cooling capacity was 1.5 W for temperature- dependent parameters calculated with empirical formulas. The accuracy of the numerical model assuming temperature-dependent material peoperties was confn'med and it could be used to accutately evaluate thermoelectric cooling performance.
出处 《红外与激光工程》 EI CSCD 北大核心 2016年第6期184-189,共6页 Infrared and Laser Engineering
基金 国家自然科学基金(51376068) 华中科技大学青年人才引进培育基金项目
关键词 热电制冷 热物性 数值分析 制冷量 thermoelectric cooling thermophysical property numerical analysis cooling capacity
  • 相关文献

参考文献10

  • 1李江澜,石云波,赵鹏飞,高文宏,陈海洋,杜彬彬.TEC的高精度半导体激光器温控设计[J].红外与激光工程,2014,43(6):1745-1749. 被引量:68
  • 2江世臣,胡炳亭,付鑫,康奥峰,董瑶海.某星载CCD器件散热用热电制冷器的性能试验[J].红外与激光工程,2014,43(1):123-128. 被引量:5
  • 3戴维涵,代彦军,张鹏,王如竹.半导体制冷元件特性参数测量及选用[J].上海交通大学学报,2004,38(10):1669-1672. 被引量:27
  • 4Hejtmdnek J, KnfO6ek K, s'vejda V, et al. Test system for thermoelectric modules and Materials [J]. Journal of Electronic Materials, 2014, 43(10):3726-3732.
  • 5Mahajan S B. A test setup for characterizing high-temperature thermoelectric modules [D]. Rochester:Rochester Institute of Technology, 2013.
  • 6Luo Z. A simple method to estimate the physical characteristics of a thermoelectric cooler from vendor datasheets[J]. Electronics Cooling, 2008, 14(3): 22-27.
  • 7Ahiska R, Ahiska K. New method for investigation of parameters of real thermoelectric modules [J]. Energy Conversion & Management, 2010, 51(2): 338-345.
  • 8. Authors U. Analysis of thermoelectric coolers by a spice- compatible equivalent-circuit model [J]. IEEE Power Electronics Letters, 2005, 3(2): 63-66.
  • 9McCarty R. A comparison between numerical and simplified thermoelectric cooler models [J]. Journal of Electronic Materials, 2010, 39(9): 1842-1847.
  • 10Ferrotec (CN) Corporation. Thermoelectric Technology Guide [EB/OL]. http://www.ferrotec.com.cn/technology/index?id = 004003, 2015-03-10.

二级参考文献16

共引文献97

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部