期刊文献+

基于多项式混沌的全局敏感度分析 被引量:13

Global Sensitivity Analysis Based on Polynomial Chaos
下载PDF
导出
摘要 回顾基于多项式混沌和方差分解的全局敏感度分析方法,针对高维数随机空间和高阶多项式混沌展开面临的"维数灾难"问题,采用回归法、稀疏网格积分及基于l1优化的稀疏重构技术(即压缩感知技术)来减少非嵌入式多项式混沌方法所需的样本配置点数目.针对几个典型响应面模型(包括Ishigami函数、Sobol函数、Corner peak函数和Morris函数)进行Sobol全局敏感度指标计算,展示多项式混沌方法在基于方差分解的全局敏感度分析中的有效性. Global sensitivity analysis method based on polynomial chaos and variance decomposition is reviewed comprehensively. In order to alleviate "curse of dimensionality" coming from high-dimensional random spaces or high-order polynomial chaos expansions, several approaches such as least square regression, sparse grid quadrature and sparse recovery based on l1 minimization (i. e. compressive sensing) are used to reduce sample size of collocation points that needed by non-intrusive polynomial chaos method. With computation of Sobol global sensitivity indices for several benchmark response models including Ishigami function, Sobol function, Corner peak function and Morris function, effective implementations of polynomial chaos method for variance-based global sensitivity analysis are exhibited.
作者 胡军 张树道
出处 《计算物理》 CSCD 北大核心 2016年第1期1-14,共14页 Chinese Journal of Computational Physics
基金 国家自然科学基金(11172049 11472060 11101045) 中国工程物理研究院科学技术发展基金(2015B0201037 2013A0101004)资助项目
关键词 多项式混沌 全局敏感度 维数灾难 稀疏重构 polynomial chaos global sensitivity curse of dimensionality sparse recovery
  • 相关文献

参考文献49

  • 1SALTELLI A, TARANTOLA S, CAMPOLONGO F, RATTO M. Sensitivity analysis in practice: a guide to assessing scientific models[M]. Chichester: John Wiley & Sons Ltd, 2004.
  • 2SALTELLI A, CHAN K, SCOTT E M. Sensitivity analysis[M] ffWiley Series in Probability and Statistics. Wiley, 2000.
  • 3HELTON J C. Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive-waste disposal [J]. Reliability Engineering and System Safety, 1993, 42 (2 - 3 ) : 327 - 367.
  • 4DOWNING D J, GARDNER R H, HOFFMAN F O. An examination of response-surface methodologies for uncertainty analysis in assessment models[Jl. Technometrics, 1985, 27:151 -163.
  • 5MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979, 21 : 239 - 245.
  • 6MORRIS M D. Factorial sampling plans for preliminary computational experiments[J]. Technometrics, 1991, 33(2) : 161 - 174.
  • 7CUKIER R I, FORTUIN C M, SHULER K E, et al. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients: I. theory[J]. J Chem Phys, 1973, 59(3) : 3873 -3878.
  • 8SOBOL' I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Math Comput Simulation, 2001, 55 (1 -3): 271 -280.
  • 9SACKS J, WELCH W J, MITCHELL T J, WYNN H P. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4:409-435.
  • 10WANG P, LU Z, TANG Z. An application of the Kriging method in global sensitivity analysis with parameter uncertainty[J]. Applied Mathematical Modelling, 2013, 37:6543 -6555.

同被引文献101

引证文献13

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部