期刊文献+

基于高阶叠层矢量基函数的E-H时域有限元方法分析谐振腔和波导结构 被引量:1

E-H Time-Domain Finite-Element Method with Hierarchical Vector Basis Functions for Analysis of Cavity and Waveguide Structures
下载PDF
导出
摘要 将高阶叠层矢量基函数用于E-H时域有限元方法,电场和磁场用相同的基函数展开并同时求解,时间离散采用Crank-Nicolson差分格式使得时间步长的选取摆脱稳定性条件的限制,同时采用完美匹配层来截断计算区域.对三维谐振腔及波导结构进行数值模拟与分析,结果表明,相较于低阶基函数,高阶叠层矢量基函数可以有效提高E-H时域有限元方法的计算精度. We present E-H time-domain finite-element method using hierarchical high-order vector basis functions. Electric fields and magnetic fields are computed together and Crank-Nicolson difference scheme is implemented to obtain an unconditionally stable algorithm. Meanwhile,perfectly matched layers are used for truncation of unbounded regions. Three-dimensional cavity and waveguide structures are simulated. It shows that accuracy is improved by E-H TDFEM method with higher-order basis functions.
出处 《计算物理》 CSCD 北大核心 2016年第3期333-340,共8页 Chinese Journal of Computational Physics
基金 国家重点基础研究发展计划(2013CB328904) 国家自然科学基金重点项目(61431014)资助
关键词 叠层矢量基函数 高阶矢量基函数 E-H时域有限元方法 CRANK-NICOLSON差分格式 hierarchical basis functions higher-order basis functions time-domain finite-element method Crank-Nicolson scheme
  • 相关文献

参考文献2

二级参考文献57

  • 1葛德彪 闫玉波.电磁波时域有限差分方法[M].西安:西安电子科技大学出版社,2001..
  • 2王长清.现代计算电磁学基础[M].第一版.北京:北京大学出版社,2005.
  • 3James G L. Geometrical theory of diffraction for electromagnetic waves [ M]. Chicago, IL: Peregrinus,1976.
  • 4Michaeli A. Equivalent edge currents for arbitrary aspects of observation [ J]. IEEE Trans Antennas Propag, 1995,43(2):162 -169.
  • 5Millar R F. An approximate theory of the diffraction of an electromagnetic wave by an aperture in a plane screen [J]. ProcIEEE, 1993, 81(12) : 1658 -1684.
  • 6Stratton J A. Electromagnetic theory [ M]. New York: McGraw-Hill, 1941.
  • 7盛新庆.计算电磁学要论[M].第1版.北京:科学出版社,2004.
  • 8Chew W J, Jiang L J. Overview of large-scale computing: The past,the present, and the future [ J]. Proceedings of TheIEEE,2013, 101(2) : 227 -241.
  • 9Silvester P P, Ferrari R L. Finite elements for electrical engineering [ M]. Cambridge: Cambridge University Press, 1983.
  • 10Zienkiewicz 0 C , Taylor R L. The finite element method [ M ]. 4th ed. New York : McGraw-Hill, 1989.

共引文献19

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部