期刊文献+

重心Lagrange插值配点法求解二维双曲电报方程 被引量:7

Barycentric Lagrange Interpolation Collocation Method for Two-dimensional Hyperbolic Telegraph Equation
下载PDF
导出
摘要 提出一种求解二维双曲电报方程的高精度重心Lagrange插值配点法.采用重心Lagrange插值构造包含时间和空间变量的近似函数.在给定Chebyshev-Gauss-Lobatto节点上,将多变量重心Lagrange插值近似函数代入双曲电报方程及其定解条件,得到离散代数方程组.包含狄里克雷和诺依曼边界条件的数值算例表明,本文方法程序实现方便并具有高精度,可应用于求解高维问题. We propose a numerical scheme for two-dimensional hyperbolic telegraph equation,in which Chebyshev-Gauss-Lobatto collocation nodes and approximate solutions with multi-variable barycentric Lagrange interpolation functions are used. Multi-variable barycentric Lagrange interpolation functions are given for spatial,temporal variable and their derivatives. Accuracy of the method is demonstrated with test examples with Dirichlet and Neumann boundary conditions. Numerical results are more accurate than numerical solutions in literatures. In additional,the method is easy to implement for multidimensional problems.
作者 刘婷 马文涛
出处 《计算物理》 CSCD 北大核心 2016年第3期341-348,共8页 Chinese Journal of Computational Physics
基金 国家自然科学基金(51269024 51468053)资助项目
关键词 双曲电报方程 重心Lagrange插值 配点法 Chebyshev-Gauss-Lobatto节点 hyperbolic telegraph equation barycentric Lagrange interpolation collocation method Chebyshev-Gauss-Lobatto nodes
  • 相关文献

参考文献12

  • 1BIBU1 R, SEZER M. Taylor polynomial solution of hyperbolic equation with constant coefficient [ J]. lnt J Comput Math, 2011, 88(3) : 533 -544.
  • 2DEHGHAN M, GHESMATI A. Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method [ J ]. Eng Anal Bound Elem, 2010, 34 ( 1 ) : 51 - 59.
  • 3GAO F, CHI C. Unconditionally stable difference scheme for a one-space-dimensional linear hyperbolic telegraph equation [J]. J Comput, 2007, 187(2): 1272 -1276.
  • 4MITTAL R. C, BHATIA R. Numerical solution of second order one dimensional hyperbolic telegraph equation by cubic B- spline collocation method [ J]. Appl Math Comput, 2013, 220:496-506.
  • 5SAADATMANDI A, DEHGHAN M. Numerical solution of hyperbolic telegraph eqution using Chebyshev tau method [ J ]. Numer Methods Partial Differ Equ ,2010, 26 (1) :239 -252.
  • 6LAKSTANI M, SARAY B. N. Numerical solution of telegraph equation using interpolating scaling functions [ J ]. Comput Math Appl, 2010, 60(7) : 1964 - 1972.
  • 7BIIB[JI R, SEZER M. A taylor matrix method for the solution of a two-dimensional linear hyperbolic equation [ J]. Appl Math Lett,2011, 24(10) : 1716 - 1720.
  • 8DEHGHAN M, AREZOU G. Combination of meshless local weak and strong (MWLS) forms to solve the two-dimensional hyperbolic telegraph equation [J]. Eng Anal Bound Elem, 2010, 34(4): 324-336.
  • 9DEHGHAN M, MOHEBBI A. High order implicit collocation method for the solution of two-dimensional linear hyperbolic equation [ J]. Numer Meth Partial Diff Eq, 2009, 25:232-43.
  • 10JIWARI R, PANDIT S, MITTAL R. C. A differential quadrature algorithm to solve the two-dimensional linear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions [Jl. Appl Math Comput, 2012, 218:7279 -7294.

同被引文献52

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部