期刊文献+

Inequalities and Separation for a Biharmonic Laplace-Beltrami Differential Operator in a Hilbert Space Associated with the Existence and Uniqueness Theorem

Inequalities and Separation for a Biharmonic Laplace-Beltrami Differential Operator in a Hilbert Space Associated with the Existence and Uniqueness Theorem
原文传递
导出
摘要 In this paper, we have studied the separation for the biharmonic Laplace-Beltrami differential operatorAu(x) = -△△u(x) + V(x)u(x),for all x ∈ R^n, in the Hilbert space H = L2(R^n,H1) with the operator potential V(x) ∈ C^1 (R^n, L (H1) ), where L (H1 ) is the space of all bounded linear operators on the Hilbert space H1, while AAu is the biharmonic differential operator and△u=-∑i,j=1^n 1/√detg δ/δxi[√detgg-1(x)δu/δxj]is the Laplace-Beltrami differential operator in R^n. Here g(x) = (gij(x)) is the Riemannian matrix, while g^-1 (x) is the inverse of the matrix g(x). Moreover, we have studied the existence and uniqueness Theorem for the solution of the non-homogeneous biharmonic Laplace-Beltrami differential equation Au = - △△u + V(x) u (x) = f(x) in the Hilbert space H where f(x) ∈ H as an application of the separation approach.
出处 《Journal of Partial Differential Equations》 CSCD 2016年第1期59-70,共12页 偏微分方程(英文版)
  • 相关文献

参考文献30

  • 1Everitt W. N. and Giertz M., Some properties of the domains of certain differential operators. Proc. London Math. Soc., 23 (1971), 301-324.
  • 2Everitt W. N. and Giertz M., Some inequalities associated with certain differential operators. Math. Z., 126 (1972), 308-326.
  • 3Everitt W. N. and Giertz M., On some properties of the powers of a familly self-adjoint differential expressions. Proc. London Math. Soc., 24 (1972), 149-170.
  • 4Everitt W. N. and Giertz M., Inequalities and separation for Schrodingertype operators in L2( R^n). Proc. Roy. Soc. Edin., 79A (1977), 257-265.
  • 5Biomatov K. Kh., Coercive estimates and separation for second order elliptic differential equations. Soviet Math. Dokl. 38 (1989). English transl, in American Math. Soc. (1989), 157- 160.
  • 6Otelbaev M., On the separation of elliptic operator. Dokl. Acad. Nauk SSSR Russian, 234 (1977), 540-543.
  • 7Zettle A., Separation for differential operators and the Lp spaces. Proc. Amer. Math. Soc., 55 (1976), 44-46.
  • 8Mohamed A. S., Separation for Schrodinger operator with matrix potential. Dokl. Acad. Nauk Tajkctan Russian ,35 (1992), 156-159.
  • 9Mohamed A. S. and E1-Gendi B. A., Separation for ordniary differential equation with matrix coefficient. Collect. Math., 48 (1997), 243-252.
  • 10Mohamed A. S., Existence and uniqueness of the solution, separation for certain second order elliptic differential equation. Applicable Analysis, 76 (2000), 179-185.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部