期刊文献+

基于高通量测序解析碳化温度对麻秆电极微生物群落影响 被引量:2

Influence of Carbonization Temperature on Bacterial Community of the Biological Carbon Electrode Based on High-throughput Sequencing Technology
原文传递
导出
摘要 采用Solixa高通量测序技术比较了1 000℃和1 800℃碳化麻秆制备电极OCP-1000和OCP-1800在生物电化学系统运行过程中形成的生物膜微生物群落结构差异.测序分别获得OCP-1000和OCP-1800附着生物膜16S rRNA基因V3区优化序列4 231和5 263条,经过97%相似度归并后获得OTUs数量分别为1 187和1 338个.α多样性指数(Chao、Shannon指数)分析表明碳化温度越低,电极生物膜微生物多样性越丰富.电极OCP-1000和OCP-1800生物膜中优势菌群均为Proteobacteria、Firmicutes和Bacteroidetes,这3个门的细菌在OCP-1000生物膜含量分别为66%、10%和9%,但在电极OCP-1800生物膜中含量分别为71%、7%和9%.不同碳化温度制备的麻秆电极在生物电化学系统运行过程形成的生物膜不仅存在共有细菌种类,也含有独特菌种,说明电极制备过程碳化温度影响电极生物膜微生物群落结构. Microbial diversity of anodic biofilm in bioelectrochemical systems with hemp rod carbonized at 1 000 and 1 800℃ as anode was investigated using Solexa high-throughput sequencing technology. The results showed that a total of 4 231 and 5 263 optimized 16S rRNA gene sequences were gained from the electrode biofilm on the hemp rod carbonized at 1 000 and 1 800℃ , respectively. At the level of 97% similarity, 1 187 and 1 338 OTUs were obtained for electrode biofilm carbonized at 1 000 and 1 800℃ , respectively. The result of a diversity analysis showed that microbial diversity increased with decreasing carbonization temperature. Dominant phylum for both biofilms were Proteobacteria, Firmicutes and Bacteroidetes, which accounted for 66% , 10% and 9% , respectively for 1 000℃, while 71% , 7% and 9% , respectively for 1 800℃. Beside the coexisting phylum, some unique species were also discovered, demonstrating that carbonization temperature did not only influence the electrode structure, but also affected the microbial community structure.
出处 《环境科学》 EI CAS CSCD 北大核心 2016年第6期2271-2275,共5页 Environmental Science
基金 福建省中青年教师教育科研项目(JA15372) 国家自然科学基金青年科学基金项目(51208490)
关键词 麻秆 碳化温度 生物电化学系统 微生物群落结构 高通量测序 hemp rod carbonization temperature bioelectrochemical system microbial community structure high-throughput sequencing
  • 相关文献

参考文献21

  • 1Logan B E, Rabaey K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies [ J]. Science, 2012, 337 (6095): 686-690.
  • 2Rabaey K, Rodrlguez J, Blackall L L, et al. Microbial ecology meets electrochemistry : electricity-driven and driving communities[J]. The ISME Journal, 2007, 1(1) : 9-18.
  • 3Chen S L, He G H, Hu X W, et al. A Three-dimensionally ordered macroporous carbon derived From a natural resource as anode for microbial bioelectrochemical systems [ J ]. Chemsuschem, 2012, 5 (6) : 1059-1063.
  • 4Chen S L, He G H, Liu Q, et al. Layered corrugated electrode macmstructures boost microbial bioelectrocatalysis[ J]. Energy & Environmental Science, 2012, 5 ( 12 ) : 9769-9772.
  • 5张文标,钱新标,马灵飞.不同炭化温度的竹炭对重金属离子的吸附性能[J].南京林业大学学报(自然科学版),2009,33(6):20-24. 被引量:24
  • 6江兰兰,王先友,张小艳,吴昊,吴春.由MOF-5制备的活性多孔碳及其超级电容特性[J].电源技术,2014,38(8):1497-1500. 被引量:8
  • 7Chen S L, Liu Q, He G H, et al. Reticulated carbon foam derived from a sponge-like natural product as a high-performance anode in microbial fuel cells[ J]. Journal of Materials Chemistry, 2012, 22(35) : 18609-18613.
  • 8Sun Y M, Wei J C, Liang P, et aL Electricity generation and microbial community changes in microbial fuel cells packed with different anodic materials [ J ]. Bioresource Technology, 2011, 102(23) : 10886-10891.
  • 9Ansorge W J. Next-generation DNA sequencing techniques [ J ]. New Biotechnology, 2009, 25 (4) : 195-203.
  • 10Wang Z J, Zheng Y, Xiao Y, et al. Analysis of oxygen reduction and microbial community of air-diffusion biocathode in microbal fuel cells[ J]. Bioresource Technology, 2013, 144: 74-79.

二级参考文献46

共引文献34

同被引文献5

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部