期刊文献+

基于神经网络的结构光系统标定 被引量:8

Research on System Calibration of Structured-Light Measurement Based on Neural Network
下载PDF
导出
摘要 提出一种基于神经网络的系统标定方法.通过射影变换及误差补偿方法,建立摄像机图像平面与投影仪图像平面的映射关系,利用该映射关系和标定点的摄像机图像坐标,计算得到相应的投影仪图像坐标;建立三层结构的神经网络,该网络以两个图像坐标为输入,对应的世界坐标为输出,训练样本由得到的标定点的两个图像坐标及其世界坐标组成,采用BP算法训练该网络;训练过程即为神经网络逼近系统模型的过程,训练完成时,系统完成标定.实验表明,与传统的结构光标定方法对比,本文提出的方法简化了建模复杂度和标定过程,提高了标定精度,并具有普遍适应性. A structured-light system calibration method based on a neural network was proposed. Byusing the method of projective transformation and error compensation, the mapped relation between thecamera image plane and the projector image plane was obtained. Then, with the relation and the cameraimage-coordinates, the corresponding projector image coordinates were calculated. So, a three-layerneural network was constructed. For this network, the inputs are two image coordinates and outputs are3D world coordinates. The training set consists of two image coordinates and 3D world coordinates ofcalibration points. Then, the neural network was trained by Back Propagation (BP) algorithm while thesystem model was fitting with it. When the process of the training was finished, the calibration was alsoaccomplished. The results of the experiments prove that the method proposed in the paper reveals ahigher degree of accuracy comparing with the conventional methods, and reduces the complexity of themodel and simplifies the process of calibration. Besides, it can be applied in various conditions gererally.
出处 《光子学报》 EI CAS CSCD 北大核心 2016年第5期81-86,共6页 Acta Photonica Sinica
基金 国家自然科学基金(No.61377104)资助~~
关键词 三维轮廓测量 结构光 摄像机标定 神经网络 BP算法 射影变换 模型 Surface measurement Structured-light Neural network Cameras calibrationBackDroDa ation, Projective transformation Model
  • 相关文献

参考文献3

二级参考文献33

  • 1杨必武,郭晓松.摄像机镜头非线性畸变校正方法综述[J].中国图象图形学报(A辑),2005,10(3):269-274. 被引量:99
  • 2张可,许斌,唐立新,师汉民.基于改进遗传算法的立体视觉系统标定[J].计算机工程与应用,2006,42(1):1-4. 被引量:10
  • 3杜小平,曾德贤.基于目标特征的航天器相对状态测量方法误差分析[J].装备指挥技术学院学报,2006,17(5):69-73. 被引量:6
  • 4焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996..
  • 5马颂德 张正友.计算机视觉[M].北京:科学出版社,1998.72-80.
  • 6TSAI R. Techniques for calibration of the scale factor and image center for high accuracy 3D machine vision metrol- ogy[J]. IEEE of Robotics and Automation,1987,3(4) : 323 - 344.
  • 7MALLEM M, SHAHEEN M, FLORENT C. Automatic Camera Calibration Based on Robot Calibration[ C ]. IEEE Instrumentation and Measurement Technology Confer- ence, 1999, (2) :1278 - 1282.
  • 8ZWEIRI Y H. Optimization of a three - term back propa- gation algorithm used for neural network learning [ J ]. Int J of Computational Intelligence, 2007,3 (4) :322 -327.
  • 9LIU J, FENG D, ZHANG W. Adaptive improved natural gradient algorithm for blind source separation [ J ]. Neural Computation, 2009,21 (3) :872 - 889.
  • 10SIU S, YANG S, LEE C, et al. Improving the back - propagation algorithm using evolutionary strategy : J ]. IEEE Trans on Circuits and Systems - II : Express Briefs, 2007,54(2) :171 - 175.

共引文献23

同被引文献107

引证文献8

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部