期刊文献+

多频原子力探针显微技术 被引量:3

Multi-frequency atomic force microscopy
原文传递
导出
摘要 不断提高空间分辨率、数据采集速度以及实现材料性质的成像,一直以来就是原子力显微术的发展目标.目前,最可能实现这一目标的手段是近些年发展的多频原子力显微术.多频原子力显微术,即利用多频率激励和/或多频率探测微悬臂的振动信号来研究样品纳米物性的一大类AFM技术.它可以实现针尖与样品间作用非线性信息的提取,在组分探测灵敏度、时间和空间成像分辨率等方面展现了巨大的优势.文中综述了多频原子力显微术所包含的不同实现方法的基本原理,并介绍了它们在高分辨成像、纳米力学、材料、生物等方面的前沿应用实例.此外,为探索多频原子力显微术,我们提出了一种特殊的高次谐振型石英音叉微悬臂模型.最后,文章展望了多频原子力显微术的下一步技术发展和应用研究. It has always been the goal of atomic force microscopy to improve the spatial resolution, the data acquisition speed and the detection of material properties continuously. At present, the multi-frequency atomic force microscopy, which is a new technology, in recent years is the most possible mean to achieve the goal. Multi-frequency atomic force microscopy, which includes various methods to characterize the samples' nanoscale properties, drives and/or detects micro-cantilever vibration by using multiple frequency. It can extract the nonlinear signal between tip and sample with a high composition detection sensitivity as well as temporal and spatial imaging resolution. In this paper, we reviews the basic principle of different implementation methods included in the multi-frequency atomic force microscopy, and illustrates them by some cutting-edge applications in high resolution imaging, nanometre mechanics, materials, biological application, etc. In addition, we proposed a special micro-cantilever model of quartz tuning fork that can be used in the multi-frequency atomic force microscopy. Finally, the article looks forward to its future development and applied research.
出处 《中国科学:技术科学》 EI CSCD 北大核心 2016年第5期437-450,共14页 Scientia Sinica(Technologica)
基金 中国科学院“引进杰出技术人才”项目 “卓越青年科学家”项目 青年创新促进会项目 科研装备研制项目(批准号:YZ201418)资助
关键词 多频原子力显微术 非线性相互作用 高次谐振 高阶模式 multi-frequency AFM nonlinear interactions higher harmonics high-order mode
  • 相关文献

参考文献41

  • 1Bhushan B. Springer Handbook of Nanotechnology: Scanning Probe Microscopy. 3rd ed. Berlin: Springer-Verlag, 2010.
  • 2Giessibl F J. Advances in atomic force microscopy. Rev Mod Phys, 2003, 75:949-983.
  • 3L6pez-polfn G, G6mez-Navarro C, Parente V, et al. Increasing the elastic modulus of graphene by controlled defect creation. Nat Phys, 2015, 11:26-31.
  • 4Garcia R. Amplitude Modulation Atomic Force Microscopy. Weinheim: Wiley-VCH, 2010.
  • 5Lira T C. The relationship between Lennard-Jones (12-6) and Morse potentialfunctions. Z Naturfors Sect A-J Phys Sci, 2003, 58:615-617.
  • 6LimT C. Decisive role of mathematical methods in early cancerdiagnostics: Optimized Padd-based magnetic resonance spectroscopy. J Math Chem, 2007, 42:1-35.
  • 7Butt H J, Capella B, Kappl M. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf Sci Rep, 2005, 59:1-152.
  • 8Johnson K L. Contact Mechanics. Cambridge: Cambridge University Press, 1985.
  • 9Jonhson K L, Kendall K, Roberts A D. Surface energy and the contact of elastic solids. Proc R Soc A, 1971,324:301-313.
  • 10Derjaguin B V, Muller V M, Toporov Y P. Effect of contact deformation on the adhesion of particles. J Colloid Interf Sci, 1975, 53: 314-326.

同被引文献11

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部