摘要
Tarantula venoms provide a model system for studying toxin selectivity, structure-activity relationships and molecular evolution ofpeptide toxins. Previous studies have identified a large number of peptide toxins in the venom of the Chinese bird spider Haplopelma hainanum, generally regarded as a highly venomous spider. However, the lack of available RNA-seq transcriptomic and genomic data is an obstacle to understanding its venom at the molecular level. In this study, we investigated the venom gland transcriptome of/-/, hainanum by RNA-seq, in the absence of an available genomic sequence. We identi- fied 201 potential toxins among 57 18 l de novo assembled transcripts, including knottins, Kunitz-type toxins, enzymes and other proteins. We systematically identified most of the knottins and Kunitz-type toxins, some of which showed strongly biased expression in the venom gland, including members of the huwentoxin-1, huwentoxin-2 and magi-1 families. We also discovered several novel potential toxins. These data demonstrate the high molec- ular and structural diversity in the venom toxins ofH. hainanum. This study offers a useful strategy for exploring the complex components of spider venoms.
Tarantula venoms provide a model system for studying toxin selectivity, structure-activity relationships and molecular evolution ofpeptide toxins. Previous studies have identified a large number of peptide toxins in the venom of the Chinese bird spider Haplopelma hainanum, generally regarded as a highly venomous spider. However, the lack of available RNA-seq transcriptomic and genomic data is an obstacle to understanding its venom at the molecular level. In this study, we investigated the venom gland transcriptome of/-/, hainanum by RNA-seq, in the absence of an available genomic sequence. We identi- fied 201 potential toxins among 57 18 l de novo assembled transcripts, including knottins, Kunitz-type toxins, enzymes and other proteins. We systematically identified most of the knottins and Kunitz-type toxins, some of which showed strongly biased expression in the venom gland, including members of the huwentoxin-1, huwentoxin-2 and magi-1 families. We also discovered several novel potential toxins. These data demonstrate the high molec- ular and structural diversity in the venom toxins ofH. hainanum. This study offers a useful strategy for exploring the complex components of spider venoms.