期刊文献+

基于电子鼻/舌融合技术的白酒类别辨识 被引量:19

Sensor Fusion of Electronic Nose and Tongue for Identification of Chinese Liquors
原文传递
导出
摘要 为实现白酒质量的快速鉴别,本研究采用两个不同的电子鼻和电子舌融合系统采集不同品牌白酒样品的气-味信息,采用主成分分析法、K均值法对检测结果进行聚类分析,采用支持向量机法对白酒的品牌进行预测分类分析。经主成分分析聚类分析后,应用基于TGS型气敏传感器的电子鼻和电子舌融合系统可以将3种酒进行很好的区分,其余5种酒有交叉,而应用基于MQ、MP型气敏传感器的电子鼻和电子舌融合系统可以将8种白酒基本区分开来;K均值法分别用于两融合系统,前融合系统的错分类概率为33.3%,后融合系统的错分类概率为23.75%。采用支持向量机法对白酒的品牌进行预测分类,应用前融合系统的识别率为93.75%,而应用后融合系统的识别率为98.75%。结果表明:气-味信息融合技术可以实现对白酒品牌的鉴别,且应用基于MQ、MP型气敏传感器的电子鼻和电子舌融合系统对白酒类别的识别结果较好于应用基于TGS型气敏传感器的电子鼻和电子舌融合系统。 Two different fusion systems of electronic nose and tongue were used to collect data on aroma and taste of Chinese liquors of different brands:(A) a fusion system of electronic tongue and nose, based on Taguchi gas sensors(TGS);(B) a fusion system of electronic tongue and nose, based on MQ-MP-type gas sensors. Clustering analysis of the aroma and taste was performed using principal component analysis(PCA) and the k-means algorithm. Next, prediction and classification of the different brands of Chinese liquors were performed using a support vector machine(SVM). After clustering analysis by PCA, fusion system A could distinguish three brands of Chinese liquors, while the rest of the brands showed overlapping results. Fusion system B could distinguish eight brands of Chinese liquors. The k-means algorithm was applied to the two fusion systems, and the wrong classification rates of fusion systems A and B were found to be 33.3% and 23.75%, respectively. The accuracy of prediction and classification of the Chinese liquors by the fusion systems A and B for was 93.75% and 98.75%, respectively. The study showed that the combination of information on aroma and taste could be used for identification of different brands of Chinese liquors. Additionally, identification by the fusion system B was better than that by the fusion system A.
出处 《现代食品科技》 EI CAS 北大核心 2016年第5期283-288,共6页 Modern Food Science and Technology
基金 国家自然科学基金资助项目(31041569) 吉林省科技发展计划资助项目(20130101053JC 20140204020GX)
关键词 电子鼻 电子舌 信息融合 白酒 electronic nose electronic tongue information fusion Chinese liquor
  • 相关文献

参考文献12

  • 1张健,赵镭,欧阳一非,高海燕,杨应军,尹京苑.现代仪器分析技术在白酒感官评价研究中的应用[J].食品科学,2007,28(10):561-565. 被引量:32
  • 2Chira K, Teissedre P. Chemical and sensory evaluation of wine matured in oak barrel: effect of oak species involved and toasting process [J]. European Food Research & Technology, 2014, 240(3): 533-547.
  • 3Stefano V D, Avellone G, Bongiomo D, et al. Applications of liquid chromatography-mass spectrometry for food analysis [J]. Journal of Chromatography A, 2012, 1259(19): 74-85.
  • 4Plutowska B, Wardencki W. Application of gas chromatography-olfactometry (GC-O) in analysis and quality assessment of alcoholic beverages - A review [J]. Food Chemistry, 2008, 107(1): 449-463.
  • 5Guti6rrez J, Haddi Z, Amari A. Hybrid electronic tongue based on multisensor data fusion for discrimination of beers [J]. Sensors & Actuators B Chemical, 2013, 177(1): 989-996.
  • 6Lerma M D L N L D, Bellincontro A, Garcia-Martinez T, et al. Feasibility of an electronic nose to differentiate commercial Spanish wines elaborated fi'om the same grape variety [J]. Food Research International, 2013, 51(2): 790-796.
  • 7Oliveira J E, Scagion V P, Grassi V, et al. Modification of electrospun nylon nanofibers using layer-by-layer films for application in flow injection electronic tongue: detection of paraoxon pesticide in corn crop [J]. Sensors & Actuators B Chemical,2012,171(8):249-255.
  • 8李毅,王银瓶,吝涛,胡卫军,潘跃峰,王平,王正方,吕海燕.船载海洋环境重金属检测的电子舌研究[J].传感技术学报,2007,20(1):32-37. 被引量:9
  • 9王永维,王俊,朱晴虹.基于电子舌的白酒检测与区分研究[J].包装与食品机械,2009,27(5):57-61. 被引量:43
  • 10于海燕,汪丽,何兰兰,戴鑫,姚桂燕,王俊魁.基于嗅觉指纹信息的黄酒酒龄和产地鉴别[J].现代食品科技,2014,30(9):258-264. 被引量:5

二级参考文献69

共引文献86

同被引文献312

引证文献19

二级引证文献191

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部