期刊文献+

关于数据仓库和数据挖掘在物流系统中的应用研究 被引量:1

Research on the Application of Data Warehouse and Data Mining in Logistics System
下载PDF
导出
摘要 针对近年来我物流行业急剧发展,物流经营的各个环节对数据管理要求越来越高,物流管理信息系统在其中扮演的角色越来越重要。本文浅谈如何将数据仓库技术、数据挖掘技术结合起来用于物流管理业,为决策层提供技术支持。首先对数据仓库和数据挖掘作了简单介绍;其次着重论述了在物流管理信息系统的构建过程中数据仓库、数据挖掘和OLAP各自的作用,最后站在企业生存的角度上,建议应加大物流系统的建设。本文对物流业的从业人员具有一定的积极意义。 In view of the rapid development of logistics industry in recent years, the demands for data management in each link of logistics management are higher and higher. Logistics management information system is playing an increasingly important role in logistics industry. This paper discusses how to combine the data warehouse and data mining technology in logistics management to provide technical support for policy makers. First of all, data warehouse and data mining are introduced briefly; secondly, the functions of data warehouse, data mining and OLAP in the construction of logistics management information system are discussed emphatically; finally, in view of the enterprise, the construction of logistics system is suggested to be strengthen. It has certain positive meaning for personnel in logistics industry.
作者 崔嘉
出处 《电脑与电信》 2016年第4期66-68,共3页 Computer & Telecommunication
关键词 数据仓库 数据挖掘 OLAP 物流信息系统 决策 data warehouse data mining OLAP logistics information system decision making
  • 相关文献

参考文献3

二级参考文献44

  • 1李慧,闻豪.基于数据仓库的OLAP技术的研究[J].电脑知识与技术,2005(1):77-81. 被引量:16
  • 2UNITED NATIONS GLOBAL PULSE. 2012, Big Data for Development : Challenges & Opportunities [ R ]. 2012.
  • 3OFFICE OF SCIENCE AND TECHNOLOGY POLICY. Executive Office of the President, 2012, Fact Sheet: Big Data across the Federal Government[ R/OL]. [ 2012-12- 21 ]. www. WhiteHouse. gov/OSTP.
  • 4OFFICE OF SCIENCE AND TECHNOLOGY POLICY Ex- ecutive Office of the President, 2012, Obama Administra- tion Unveils" Big Data" Initiative : Announces $ 200 Mil- lion in New R&D Investments[ R/OL]. (2012-03-19). www. WhiteHouse. gov/OSTP. MCKINSEY GLOBAL INSTITUTE. 2011.
  • 5Big Data the Next Frontier for Innovation, Competition, and Productivity [ R ]. 2011.
  • 6RAJARAMAN A., ULLMAN J. D. Mining of Massive Data- sets [ M ]. Cambridge : Cambridge University Press,2011.
  • 7LAPKIN A. Hype Cycle for Big Data[ R]. Gartner, Inc. G00235042, 2012.
  • 8DENSHAM P J, GOODCHILD M F. Spatial Decision Sup- port Systems: A Research Agenda[ C ]. Proceedings GIS/ LIS'89, Orlando, FL, 1989: 707-716.
  • 9SHEKAR S, XIONG H ( Eds. ). Encyclopedia of GIS [ M ]. New York : Springer, 2007.
  • 10MILLER H J, HAN J. Geographic Data Mining and Knowl- edge Discovery[ M ]. 2nd edition. London :Taylor and Fran- cis, 2009.

共引文献93

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部