期刊文献+

基于改进型最小二乘法拟合的虹膜定位 被引量:1

Iris localization algorithm with improved least squares fitting
下载PDF
导出
摘要 针对传统虹膜定位算法计算速度慢、内存占用大的缺点,提出最小二乘法拟合圆曲线的虹膜定位算法。该算法根据虹膜区域图像和周边灰度值相差异的特点,先利用Canny算子探测虹膜图像边缘,设定合适的阈值将图像二值化;再用最小二乘法勾勒虹膜内边界和拟合外边界,并计算出虹膜内外边缘的坐标和半径。从CASIA图像数据库抽取100幅图像进行实验,结果显示所提出的算法准确率达99%,而且比传统的定位算法快150ms,减少虹膜定位计算的复杂度和内存空间。 For the traditional iris localization algorithm is slow and takes up big storage space, an iris localization algorithm based on least squares fitting circular curve is proposed in this paper. According to the difference of gray value between iris image and iris surrounding, the proposed algorithm uses Canny operator to detect image edge, makes the image binarization with a right threshold, and then outlining iris inner boundary and fitting iris image outer boundary are given by least squares approximation,and the coordinates and radii of iris' inner and outer edges are calculated. 100 images extracted from the image database CASIA were experimented. The results show that the accuracy of the proposed algorithm is up to 90 percent, and the speed is 150 ms faster than the traditional localization algorithm. The algorithm reduces the complexity of the calculation and saves memory space.
作者 韦涛 梁碧珍
出处 《计算机时代》 2016年第6期75-79,共5页 Computer Era
基金 广西高校科学研究技术项(KY2015ZD118)
关键词 虹膜识别 边缘检测 虹膜定位 最小二乘法拟合 iris recognition edge detection iris localization least squares fitting
  • 相关文献

参考文献13

  • 1康浩,徐国治.虹膜识别系统[J].电路与系统学报,2000,5(1):11-15. 被引量:21
  • 2田启川,刘正光.虹膜识别综述[J].计算机应用研究,2008,25(5):1295-1300. 被引量:27
  • 3张敏贵,潘泉,张洪才,张绍武.多生物特征识别[J].信息与控制,2002,31(6):524-528. 被引量:22
  • 4林喜荣,黄析伟,苏晓生,周斌,戴晓清.生物特征识别技术的标准化进程[J].清华大学学报(自然科学版),2006,46(2):194-198. 被引量:14
  • 5R.P.Wildes. Iris recognition: An emerging biometric technology[J]. Proceedings of the IEEE,1997.85(9): 1348-1363.
  • 6J.G. Daugman. High confidence visual recognition of persons by a test of statistical independence[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993.15(11): 1148-1161.
  • 7J.G. Daugman. The importance of being random statistical principles of iris recognition[J].Pattern Recognition, 2003.36(2):279-291.
  • 8John Daugman. New Methods in Iris Recognition[J]. IEEE Trans.on syst., Man, and Cybern. Part B,2007,37(5): 1167-1170.
  • 9Yan Li Wen Li, Yide Ma. Accurate Iris Localization Based on Region of Interest[J]. Biomedical Engineering and Biotechnology (iCBEB),2012.25(5):704-707.
  • 10Dobes M., Machala L., Tichavsky P., Pospil J..Human Eye Iris Recognition Using the Mutual Information[J]. Optik Elsevier 2004, ISSN 0030-4026,2004.115(9): 399-405.

二级参考文献119

共引文献86

同被引文献4

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部