期刊文献+

含输入时滞的电动汽车悬架系统有限频域振动控制的研究 被引量:15

Finite frequency domain vibration control for suspension systems of electric vehicles with actuator input delay
下载PDF
导出
摘要 由于轮毂电机驱动的电动汽车的驱动系统安装在轮毂处,使得汽车悬架系统簧下质量增加,造成舒适性变差及电机轴承磨损严重等问题。基于上述现象,并综合考虑控制回路的输入时滞及参数摄动因素,研究了该类悬架系统的有限频域动态输出反馈振动控制策略。对比于传统的时滞全频域的H∞控制方法,该方法能在人体对振动较为敏感的频段内取得更好的干扰衰减,同时也能保证相关的时域硬约束。为了降低车身加速度在非簧载模态频率处的奇异值,并减少传递到电机轴承上的力,考虑将动力吸振器(DVA)安装在电机轴承座上。通过Lyapunov-Krasovskii泛函及广义KYP引理,以线性矩阵不等式的形式推导出基于动态输出反馈的控制准则。最后,通过一个数值实例验证该方法在频域及时域的有效性。 For an in-wheel motor driven electric vehicle,its driving system is installed on the wheel hub position and the unsprung mass of the vehicle suspension system increases,they may severely deteriorate the riding comfort and cause problems like severe wear of motor bearings.Considering the above phenomena and the input delay and parametric uncertainties of control loop,the finite frequency domain dynamic output-feedback vibration control strategy for this kind of suspension system was studied.Compared with the traditional entire frequency domain H∞ control approach,the proposed approach could achieve a better disturbance attenuation within a frequency band where a human body was more sensitive to vibration.Meanwhile,the related timedomain rigid constraints were also guaranteed.In order to minimize the singular value response of the vehicle body acceleration at the unsprung mass modal frequency and reduce the force transmitted to the motor bearing,a dynamic vibration absorber(DVA)was installed at the motor bearing seat.Using the generalized KalmanYakubovich-Popov(KYP)lemma and Lyapunov-Krasovskii functional,the control criterion based on dynamic output-feedback was derived in the form of LMIs.At last,a numerical example was given to verify the effectiveness of the proposed control method in frequency domain and time domain.
出处 《振动与冲击》 EI CSCD 北大核心 2016年第11期130-137,共8页 Journal of Vibration and Shock
基金 国家自然科学基金(51175350)
关键词 有限频域振动控制 主动悬架 输入时滞 广义KYP引理 控制 finite frequency domain vibration control active suspensions input delay generalized KYP lemma H_∞control
  • 相关文献

参考文献1

二级参考文献14

共引文献15

同被引文献455

引证文献15

二级引证文献429

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部