期刊文献+

基于Kriging模型和条件风险值的多响应优化设计 被引量:4

Multiple responses optimization design based on Kriging and conditional value at risk
下载PDF
导出
摘要 针对具有风险规避特性的多响应随机仿真优化问题,结合稳健参数设计思想和条件风险值准则,提出基于Kriging模型的均值—条件风险值优化策略。利用元建模技术,分别建立了均值响应和条件风险值响应的Kriging模型,在此基础上构建了具有风险参数描述的均值—条件风险值决策模型;采用bootstrap方法度量环境变量的不确定性对多响应优化Pareto前沿的影响,同时给出不同风险参数对Pareto前沿的影响。仿真实验结果表明所提方法能够有效处理具有风险规避特性的多响应随机仿真优化问题,验证了所提方法的有效性和合理性。 Aiming at the risk-averse stochastic simulation optimization problems with multiple responses,by combining robust design approach with conditional value at risk criterion,an optimal strategy of mean-conditional value at risk was proposed based on Kriging model was proposed.Kriging models for mean response and conditional value at risk response were constructed respectively with meta modeling technology,and the decision model of mean-conditional value at risk with risk parameter description was built on this basis.The influence of environment variable's uncertainty on Pareto frontier of multiple responses was measured by bootstrap method,and the influence of different risk parameters on Pareto frontier was also given.The simulation experiment results showed that the proposed approach could dispose the risk-averse stochastic simulation optimization problems with multiple responses effectively.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2016年第6期1581-1589,共9页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(71471088,71371099,71401080) 教育部高等学校博士学科点专项科研基金资助项目(20123219120032) 江苏省研究生科研创新计划资助项目(KYZZ15_0126)~~
关键词 条件风险值 稳健参数设计 风险规避Kriging模型 conditional value at risk robust parameter design risk aversion Kriging model
  • 相关文献

参考文献3

二级参考文献76

  • 1NEMOTO T, HAYASHI K, HASHIMOTO M. Milk-run logis tics by Japanese automobile manufacturers in Thailand[J]. Proce- dia-Social and Behavioral Sciences, 2010, 2(3): 5980-5989.
  • 2KANEKO J, NOJIRI W. The logistics of just-in-time between parts suppliers and car assemblers in Japan[J]. Journal of Transport Geography, 2008, 16(3): 155-173.
  • 3ROSS A, JAYARAMAN V. An evaluation of new heuristics for the location of cross-docks distribution centers in supply chain network design[J].Computers & Industrial Engineer- ing, 2008, 55(1): 64-79.
  • 4MA H, MIAO Z, LIM A, et al. Crossdocking distribution networks with setup cost and time window constraint[J]. O- mega, 2011, 39(1): 64-72.
  • 5MUSA R, ARNAOUT J P, JUNG H. Ant colony optimiza tion algorithm to solve for the transportation problem of cross- docking network[J]. Computers & Industrial Engineering, 2010, 59(1): 85-92.
  • 6LEE Y H, JUNG J W, LEE K M. Vehicle routing scheduling for cross-docking in the supply ehain[J]. Computers & Indus- trial Engineering, 2006, 51(2) : 247-256.
  • 7YU W, EGBELU P J. Scheduling of inbound and outbound trucks in cross docking systems with temporary storage[J]. European Journal of Operational Research, 2008, 184 (1): 377-396.
  • 8CHEN F, LEE C Y. Minimizing the makespan in a two-ma- chine cross-docking flow shop problem[J]. European Journal of Operational Research, 2009, 193(1): 59-72.
  • 9VAHDANI B, ZANDIEH M. Scheduling trucks in cross- docking systems: robust metwheuristics[J]. Computers & Industrial Engineering, 2010, 58(1): 12-24.
  • 10CHEN F, SONG K. Minimizing makespan in two-stage hy- brid cross docking scheduling problem[J]. Computers & Op- erations Research, 2009, 36(6): 2066-2073.

共引文献25

同被引文献22

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部