期刊文献+

结合非空间属性的通用Skyline查询处理技术

General Skyline Query Processing Technology Combining with Non-spatial Attributes
下载PDF
导出
摘要 Skyline查询作为多目标决策的重要手段之一,近年来在各个领域得到广泛的应用。提出了结合非空间属性的通用Skyline查询处理技术,采用R树对设施集及数据集建立索引,并提出了两种方法来计算Skyline。第一种是基于全最近邻算法的扩展,通过计算静态Skyline结果来裁剪部分数据集。另一种是基于渐进最近邻的算法,采用查询点导向的搜索方法,利用静态Skyline结果计算与每一类设施最远的距离,将其作为边界阈值对数据点集进行裁剪,采用数据点导向的搜索方法,为裁剪后的每一个数据点计算距其最近的设施,并将数据点与设施的距离映射到多维距离空间中,结合非空间属性进行Skyline计算。实验结果表明,第二种方法减少了I/O次数,降低了CPU执行时间,提高了计算效率。 As one of the important methods for multi-criteria decision making problems, the Skyline query processing technologies have been widely studied in many applications. This paper proposes the general Skyline query processing technology combining with non-spatial attributes while R tree is adopted to index the facility set and the dataset. Two algorithms are provided to compute the Skyline results. The first algorithm is the extension of Skyline query algorithm based on all nearest neighbor method, which cuts off part of the dataset by computing the static Skyline results. The second algorithm is based on incremental nearest neighbor method, which utilizes the facility oriented searching method.The algorithm calculates the farthest distances between the static Skyline results and each type of facilities. The distances are set to bound thresholds so as to cut off data points which are farther than them. For the left points, data oriented search method is used to compute the nearest facilities of all types. After that, the distances between the data points and the facilities are mapped to the multi-dimensional distance space so as to compute the Skyline result combining with non-spatial attributes. The experimental results show that for the second algorithm the number of I/Os and CPU time are greatly reduced thus improves the computational efficiency.
出处 《计算机科学与探索》 CSCD 北大核心 2016年第7期936-947,共12页 Journal of Frontiers of Computer Science and Technology
基金 江苏省自然科学基金 No.BK2014086 中央高校基本科研业务费专项资金 No.NS2015095 南京航空航天大学研究生创新基地开放基金 No.KFJJ201461~~
关键词 通用Skyline查询 R树索引 非空间属性 最近邻 general Skyline queries R-tree index non-spatial attributes nearest neighbor
  • 相关文献

参考文献20

  • 1Sharifzadeh M, Shahabi C. The spatial skyline queries[C]//Proceedings of the 32nd International Conference on VeryLarge Data Bases,Seoul, Korea, Sep 12-15, 2006: 751-762.
  • 2Deng Ke, Zhou Xiaofang, Shen Hengtao. Multi-source skylinequery processing in road networks[C]//Proceedings ofthe 23rd IEEE International Conference on Data Engineering,Istanbul, Turkey, Apr 15- 20, 2007. Piscataway, USA:IEEE, 2007: 796-805.
  • 3Borzsonyi S, Kossmann D, Stocker K. The skyline operator[C]//Proceedings of the 17th International Conference on DataEngineering, Heidelberg, Germany, Apr 2-6, 2001. Piscataway,USA: IEEE, 2001: 421-430.
  • 4Tan K L, Eng P K, Ooi B C. Efficient progressive skylinecomputation[C]//Proceedings of the 27th International Conferenceon Very Large Data Bases, Roma, Italy, Sep 11-14,2001: 301-310.
  • 5Chomicki J, Godfrey P, Gryz J, et al. Skyline with presorting[C]//Proceedings of the 19th International Conference onData Engineering, Bangalore, India, Mar 5-8, 2003. Piscataway,USA: IEEE, 2003: 717-719.
  • 6Godfrey P, Shipley R, Gryz J. Maximal vector computationin large data sets[C]//Proceedings of the 31st InternationalConference on Very Large Data Bases, Trondheim, Norway,Aug 30-Sep 2, 2005: 229-240.
  • 7Kossmann D, Ramsak F, Rost S. Shooting stars in the sky: anonline algorithm for skyline queries[C]//Proceedings of the28th International Conference on Very Large Data Bases,Hong Kong, China, Aug 20-23, 2002: 275-286.
  • 8Papadias D, Tao Yufei, Fu G, et al. Progressive skyline computationin database systems[J]. ACM Transactions on DatabaseSystems, 2005, 30(1): 41-82.
  • 9Papadias D, Tao Yufei, Fu G, et al. An optimal and progressivealgorithm for skyline queries[C]//Proceedings of the 2003 ACM SIGMOD International Conference on Managementof Data, San Diego, USA, Jun 9- 12, 2003. New York,USA:ACM, 2003: 467-478.
  • 10Wu Ping, Zhang Caijie, Feng Ying, et al. Parallelizing skylinequeries for scalable distribution[C]//LNCS 3896: Proceedingsof the 10th International Conference on ExtendingDatabase Technology, Munich, Germany, Mar 26-31, 2006.Berlin, Heidelberg: Springer, 2006: 112-130.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部