期刊文献+

自适应观测权重的目标跟踪算法

Target Tracking Algorithm Based on Adaptive Observation Weight
下载PDF
导出
摘要 针对视觉跟踪在复杂场景中跟踪精度较低和鲁棒性较差的问题,在贝叶斯框架下提出了一种自适应观测权重的目标跟踪算法。通过视觉跟踪中的线性表示模型构建出一种加权观测模型;提出一种基于迭代加权的模型优化算法,利用在线更新的自适应权重矩阵消除观测离群值对跟踪有效性的影响;最后,采用有效的似然评估函数实现对目标准确、鲁棒的跟踪。实验结果表明,该算法在跟踪精度和鲁棒性方面都优于现有的一些跟踪算法。 To solve the problems of poor robustness and low effectiveness of visual tracking in complex scenes, this paper proposes a target tracking algorithm based on adaptive observation weight in Bayesian framework. Firstly, a weighted observation model is established via linear visual tracking representation. Then an iterative optimization algorithm is put forward to adaptively update the weight matrix to eliminate negative influences of observation outliers.Finally, effective likelihood evaluation function is adopted to capture the target accurately. The experimental results show that the proposed algorithm outperforms other state-of-the-art tracking algorithms in tracking accuracy and robustness.
作者 刘行 陈莹
出处 《计算机科学与探索》 CSCD 北大核心 2016年第7期1010-1020,共11页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金 Nos.61104213 61573168 江苏省产学研前瞻性联合研究项目 No.BY2015019-15~~
关键词 视觉跟踪 线性表示 在线更新 离群值 自适应权重矩阵 visual tracking linear representation on-line updating outliers adaptive weight matrix
  • 相关文献

参考文献25

  • 1Ross D A, Lim J, Lin R S, et al. Incremental learning for robustvisual tracking[J]. International Journal of ComputerVision, 2008, 77(1/3): 125-141.
  • 2Kalal Z, Mikolajczyk K, Matas J. Tracking-learning-detection[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence, 2012, 34(7): 1409-1422.
  • 3Henriques J F, Caseiro R, Martins P, et al. High-speed trackingwith kernelized correlation filters[J]. IEEE Transactions onPattern Analysis and Machine Intelligence, 2015, 37(3):583-596.
  • 4Zhang Kaihua, Zhang Lei, Liu Qingshan, et al. Fast visualtracking via dense spatio- temporal context learning[M]. [S.l.]:Springer International Publishing, 2014: 127-141.
  • 5Grabner H, Bischof H. On-line boosting and vision[C]//Proceedingsof the 2006 IEEE Computer Society Conferenceon Computer Vision and Pattern Recognition, New York,USA, Jun 17-22, 2006. Piscataway, USA: IEEE, 2006, 1: 260-267.
  • 6Henriques J F, Rui C, Martins P, et al. Exploiting the circulantstructure of tracking-by-detection with kernels[C]//LNCS 7575: Proceedings of the 12th European Conferenceon Computer Vision, Florence, Italy, Octr 7-13, 2012. Berlin,Heidelberg: Springer, 2012: 702-715.
  • 7Hare S, Saffari A, Torr P H S. Struck: structured outputtracking with kernels[C]//Proceedings of the 2011 IEEEInternational Conference on Computer Vision, Barcelona,Spain, Nov 6-13, 2011. Piscataway, USA: IEEE, 2011: 263-270.
  • 8Mei Xue, Ling Haibin. Robust visual tracking and vehicleclassification via sparse representation[J]. IEEE Transactionson Pattern Analysis and Machine Intelligence, 2011,33(11): 2259-2272.
  • 9Wang Dong, Lu Huchuan, Yang M H. Least soft-thresholdsquares tracking[C]//Proceedings of the 2013 IEEE Conferenceon Computer Vision and Pattern Recognition, Portland,USA, Jun 23- 28, 2013. Piscataway, USA: IEEE,2013: 2371-2378.
  • 10Zhang Tianzhu, Ghanem B, Liu Si, et al. Robust visualtracking via multi- task sparse learning[C]//Proceedings ofthe 2012 IEEE Conference on Computer Vision and PatternRecognition, Providence, USA, Jun 16- 21, 2012. Piscataway,USA: IEEE, 2012: 2042-2049.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部