期刊文献+

非主观值训练的盲视频质量评价算法 被引量:2

Blind Video Quality Assessment Strategy Without Subjective Scores Training
下载PDF
导出
摘要 针对现有基于机器学习的无参考视频质量评价方法中需要利用大量主观评价分值进行训练,导致复杂度高的问题,提出一种非主观值训练的盲视频质量评价算法.首先,利用高斯差分滤波器提取视频结构特征矢量,通过计算与质量感知中心的距离,来评估视频空域感知质量;然后,利用聚类算法获取对运动矢量进行分类的阈值,进而得到运动感知因子;最后,结合视频空域感知质量和运动加权因子得到视频客观质量.实验结果表明:该算法在LIVE video quality数据库中对视频质量预测的单调性和精确性分别达到了0.817,7和0.828,5,优于对比的其他盲视频质量评价算法;同时,该算法计算复杂度低,易于实现. Existing no-reference video quality assessment methods based on machine learning needed to use a lot of subjective scores for training which leads to high complexity,thus a blind video quality assessment strategy without subjective scores training was proposed in this paper. Firstly,video structure characteristic vector was extracted bythe difference of Gaussian (DoG)filter,and the video space perceived quality was estimated by calculating the dis-tance between the structure vector and the quality-aware center. Secondly,the classification threshold of the motion vector was obtained by clustering algorithm,and accordingly,the motion perception factor was acquired. Finally,the video objective quality was calculated based on the video space perception quality and the motion perception fac-tor. The proposed algorithm was tested on the LIVE video quality database. Experimental results show that the pro-posed algorithm,which possesses a monotonicity and a prediction accuracy of up to 0.817,7 and 0.828,5,respectively,is better than other existing blind video quality assessment methods,and that it is easy to implement because of low computational complexity.
出处 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2016年第6期562-566,共5页 Journal of Tianjin University:Science and Technology
基金 国家自然科学基金资助项目(61201179)
关键词 视频质量 无参评价 高斯差分滤波 质量感知聚类 运动矢量 video quality no-reference assessment difference of Gaussian (DoG)filter quality-aware clustering motion vector
  • 相关文献

参考文献11

  • 1Moorthy A K,Bovik A C. A two-step framework forconstructing blind image quality indices[J]. IEEE SignalProcessing Letters,2010,17(5):513-516.
  • 2Saad M A,Bovik A C,Charrier C. Blind prediction ofnatural video quality[J]. IEEE Transactions on ImageProcessing,2014,23(3):1352-1365.
  • 3He Lihuo,Tao Dacheng,Gao Xinbo. Sparse representationfor blind image quality assessment[C]// 2012IEEE Conference on Computer Vision and Pattern Recognition.Providence,USA,2012:1146-1153.
  • 4Mittal A,Muralidhar G,Ghosh J,et al. Blind imagequality assessment without human training using latentquality factors[J]. IEEE Signal Processing Letters,2012,19(2):75-78.
  • 5Mittal A,Soundararajan R,Bovik A C. Making a‘completely blind’ image quality analyzer[J]. IEEE SignalProcessing Letters,2013,21(3):209-212.
  • 6Seeling P,Reisslein M. Video transport evaluation withH. 264 video traces[J]. IEEE Communications Surveysand Tutorials,2012,14(4):1142-1165.
  • 7Zhang Lin,Zhang Lei,Mou Xuanqin,et al. FSIM:Afeature similarity index for image quality assessment[J].IEEE Transactions on Image Processing,2011,20(8):2378-2386.
  • 8Xue Wufeng,Zhang Lei,Mou Xuanqin. Learningwithout human scores for blind image quality assessment[C]//2013 IEEE Conference on Computer Vision andPattern Recognition. Portland,USA,2013:995-1002.
  • 9Seshadrinathan K,Bovik A C. Motion tuned spatiotemporalquality assessment of natural videos[J]. IEEETransactions on Image Processing,2010,19(2):335-350.
  • 10Seshadrinathan K,Soundararajan R,Bovik A C,et al.A subjective study to evaluate video quality assessmentalgorithms[C]//SPIE Proceedings Human Vision andElectronic Imaging. San Jose,USA,2010:1-10.

同被引文献12

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部