期刊文献+

尺度不变特征转换算法的多源SAR影像匹配 被引量:5

Multi-sensor SAR Imagery Matching by Using SIFT
下载PDF
导出
摘要 鉴于直接利用SIFT算法进行SAR影像间的匹配不能得到很好的效果,考虑SIFT算法在应对噪声以及对镜像影像进行匹配的局限性,提出了针对SAR影像之间匹配的SIFT算法预处理。首先利用影像与影像之间的空间信息进行匹配,之后利用SIFT算法进行局部特征点匹配,通过采用RANSAC进行错配点的去除,实现SAR影像的高精度配准。实验结果表明,该文提出的预处理以及错配点的去除为利用SIFT算法进行SAR影像的匹配提供了可能。 Scale Invariant Feature Transform (SIFT)has been widely applied in image processing.To a certain extent,the algorithm can keep scale and rotation invariance and weaken the influence of the light.However,directly using SIFT for SAR image matching could not obtain good results as expected because of the speckle noises caused by SAR imaging.In consideration of the limitation of SIFT in noises and mirror image situation,this paper proposes a pre-processing method of SIFT algorithm for SAR image matching,which firstly match images using the geographic information between them,then match local feature points with SIFT and remove mismatching points with RANSAC,finally realize the high-accuracy matching of SAR images. Results show that the pre-processing method proposed by this paper and the removal of mismatching points provide the possibility for SAR image matching using SIFT.
出处 《遥感信息》 CSCD 北大核心 2015年第6期3-7,共5页 Remote Sensing Information
关键词 合成孔径雷达 SAR SIFT 匹配 预处理 Synthetic Aperture Radar SAR SIFT matching pre-processing
  • 相关文献

参考文献2

二级参考文献15

  • 1Li H, Manjunath B S. A Contour Based Approach to Multisensor Image Registration [ J ]. IEEE Transactions on Image Processing, 1995, 4 (3) :320-334.
  • 2Lowe D G. Distinctive Image Features from Scale Invari- ant Key Points [ J ]. International Journal of Computer Vi- sion, 2004, 60(2):91-110.
  • 3Krystian M. A Performance Evaluation of Local Descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2005, 27 (10) : 1615-1630.
  • 4Krystian M . Scale & Affine Invariant Interest Point De- tectors [ J ]. International Journal of Computer Vision, 2004, 60( 1 ) :63-86.
  • 5Frost V S, Stiles J A, Shanmugan K S. A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise[ J]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence, 1982, 4(2):157-166.
  • 6Dare P, Dowman I. An Improved Model for Automatic Feature-based Registration of SAR and SPOT Images[ J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2001, 56(1) :13-28.
  • 7Brown L G. A Survey of Image Registration Techniques [J]. ACM Computing Surveys, 1992,24(4) :325-376.
  • 8Dai Xiaolong, Siamak K. A Feature-Based Image Regis- tration Algorithm Using Improved Chain-Code Represen- tation Combined with Invariant Moments [ J ]. IEEE Trans- actions on Geoscience and Remote Sensing, 1999, 37 (5) :2351-2362.
  • 9Huttenlocher D P,Klanderman G A,Rucklidge W J.Comparing images using the Hausdorff distance.IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(9):850-863
  • 10Sim D G,Kwon O K,Park R H.Object matching algorithm using robust Hausdorff distance measures.IEEE Transactions on Image Processing,1999,8(3):425-429

共引文献39

同被引文献30

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部