期刊文献+

基于改进三重训练算法的高光谱图像半监督分类 被引量:8

Semi-supervised classification for hyperspectral image based on improved tri-training method
下载PDF
导出
摘要 高光谱数据维数高,有标签的样本数量少,给高光谱图像分类带来困难。本文针对传统三重训练(tri-training)算法在初始有标签样本数量较少的情况下分类器间差异性不足的问题提出了一种基于改进三重训练算法的半监督分类框架。该方法首先通过边缘采样策略(margin Sampling,MS)选取最富含信息量的无标签样本,然后在训练每个分类器之前通过差分进化算法(differential evolution,DE)利用所选取的无标签样本产生新的样本。这些新产生的样本将被标记并且加入训练样本集来帮助初始化分类器。实验结果表明,该方法不仅能够有效地利用无标签样本,而且在有标签数据很少的情况下能够有效地提高分类精度。 The classification of hyperspectral images is difficult due to their highly dimensional features and limited number of training samples. Tri?training learning is a widely used semi?supervised classification method that addres?ses the problem of the deficiency of labeled examples. In this paper, we propose a novel semi?supervised learning algorithm based on an improved tri?training method. The proposed algorithm first uses a margin sampling ( MS) technique to select the most informative samples, and then uses a differential evolution ( DE) algorithm to generate new samples within the selected unlabeled samples. The newly generated samples are then labeled and added to the training set to help initialize the classifiers. We experimentally validated the proposed method using real hyperspec?tral data sets, and the results indicate that the proposed method can significantly reduce the need for labeled sam?ples and can achieve high accuracy compared with state?of?the?art algorithms.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2016年第6期849-854,共6页 Journal of Harbin Engineering University
基金 国家自然科学基金项目(60802059) 教育部博士点新教师基金项目(200802171003) 黑龙江省自然科学基金项目(F201409)
关键词 高光谱图像 半监督分类 三重训练 边缘采样 差分进化 hyperspectral image semi-supervised classification tri-training margin sampling differential evolution
  • 相关文献

参考文献21

  • 1WANG Liguo, JIA Xiuping. Integration of soft and hardclassifications using extended support vector machines [J].IEEE geoscience and remote sensing letters, 2009, 6 ( 3 ):543-547.
  • 2SHAHSHAHANI B M, LANDGREBE D A. The effect of unlabeledsamples in reducing the small sample size problemand mitigating the hughes phenomenon [J] . IEEE transactionson geoscience and remote sensing, 1994, 32 ( 5 ) :1087-1095.
  • 3ZHU Xiaojin. Semi-supervised learning literature survey[D]. Madison: University of Wisconsin-Madison, 2008.
  • 4BARALDIA, BRUZZONE L, BLONDA P. A multiscale expectationmaximization semisupervised classifier suitable forbadly posed image classification [J] . IEEE transactions onimage processing, 2006, 15(8) : 2208-2225.
  • 5JOACHIMS T. Transductive inference for text classificationusing support vector machines[C]//Proceedings of the 16thInternational Conference on Machine Learning. Bled, Slovenia,1999: 200-209.
  • 6CHI Mingmin, BRUZZONE L. Classification ofhyperspectraldata by continuation semi-supervised SV M [C]//Proceedingsof the 2007 IEEE International Geoscience and RemoteSensing Symposium. Barcelona, 2007: 3794-3797.
  • 7BLUM A, CHAWLA S. Learning from labeled and unlabeleddata using graph mincuts[C]//Proceedings of the 18th InternationalConference on Machine Learning. Williamston,2001: 19-26.
  • 8BLUM A, MITCHELL T. Combining labeled and unlabeleddata with co-training[C]//Proceedings of the 11th AnnualConference on Computational Learning Theory. Madison,1998: 92-100.
  • 9GOLDMAN S, ZHOU Yan. Enhancing supervised learningwith unlabeled data[C]//Proceedings of the 17th internationalconference on machine learning. San Francisco, CA,2000: 327-334.
  • 10ZHOU Zhihua, LI Ming. Tri-training: Exploiting unlabeleddata using three classifiers[J]. IEEE transactions on kno'wledge and data engineering, 2005, 17(11) : 1529-1541.

同被引文献51

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部