期刊文献+

基于时空车流灰度的城市交通热点分析 被引量:2

Urban Traffic Hotspots Analysis by Gray Image of Spatio-temporal Vehicle Flows
下载PDF
导出
摘要 随着城市规模的扩张和汽车数量的增加,拥堵和雾霾等受交通影响的现象变得越来越严重,城市交通热点发现与分析是改善交通状况的关键技术之一。根据城市中典型浮动车(出租车)的时空轨迹数据,基于图像分析理论,提出城市交通热点的空间分布分析方法。首先,根据浮动车数据,形成车流轨迹的时空分布灰度图。其次,通过将浮动车的轨迹数据映射到高精度城市交通网格上,探索了轨迹数据和城市热点区域之间的关联关系。进一步地依据车流轨迹的时空分布,发现车流密度的极值。最后,结合影响区域的参数利用高斯曲面拟合对时空灰度图像进行了热点区域分析,获得城市交通热点的空间分布。将分析结果在地图上标定,准确地反映了城市交通热点区域的详细位置及空间分布,从而给出了一种有效、直观的城市交通热点分析方法。研究结果对于城市交通规划和交通实时信息发布具有实用价值。 With the rapid development of modern cities and the dramatic increment of the amount of cars, the phenomena of congestions and atmospheric hazes due to traffics become much worse. Urban traffic hotspots detection and analysis is one of the key technologies to study traffic situations. In this paper, we analyze the spatio-temporal trajectory data of urban floating cars and apply the method of image analysis to investigate the spatial distribution patterns of these urban hotspots. First, we build up the gray images based on the spatio-temporal distribution of full data sets on floating cars. Then, we map the trajectory data to urban traffic grids with high degree of accuracy, in order to find out the correlation between the trajectories and urban hotspots. Furthermore, the extremum points of vehicle density are detected based on the spatio-temporal distribution patterns of the trajectories. Finally, we discover the most frequented locations by Gauss curve fitting on spatial-temporal gray image with the range of influence of traffic hotspots, and detect the spatial distribution of urban traffic hotspots. The proposed method is validated and the results indicated that the method is effective and can be used to visualize urban traffic hotspots.
出处 《地理信息世界》 2016年第3期13-19,共7页 Geomatics World
基金 深圳市战略新兴产业发展基金(JCYJ20130331152159761) 深圳市海外高层次人才创新创业专项(孔雀计划)(KQCX20140521115045446)资助
关键词 轨迹数据 图像分析 高斯曲面拟合 城市交通分析 trajectory data image analysis Gauss curve flitting urban traffic analysis
  • 相关文献

参考文献15

  • 1唐炉亮,常晓猛,李清泉,SHAW S L.基于蚁群优化算法与出租车GPS数据的公众出行路径优化[J].中国公路学报,2011,24(2):89-95. 被引量:35
  • 2何敏, 许晓彦. 基于GPS数据处理的出租车智能调度研究[J].仪器仪表学报,2011,32(6):264-267.
  • 3李艳红,袁振洲,谢海红,曹守华,吴先宇.基于出租车OD数据的出租车出行特征分析[J].交通运输系统工程与信息,2007,7(5):85-89. 被引量:44
  • 4傅常伦,董德存,谢峰.基于GPS的出租车空驶现象研究[C]//2007第三届中国智能交通年会论文集,2007.
  • 5童小华,陈建阳.基于GIS和GPS的交通状态参数估计与仿真模型[J].同济大学学报(自然科学版),2005,33(12):1604-1607. 被引量:11
  • 6黄玲,徐建闽.基于浮动车技术的动态交通拥挤预测模型[J].华南理工大学学报(自然科学版),2008,36(10):47-50. 被引量:8
  • 7P Castro, D zhang, C Chen, S Li ,et al. From taxi GPStraces to social and community dynamics: asurvey[J],ACM Computing Surveys, Volume 46 Issue 2, November2013.
  • 8Greenfeld J S. Matching GPS observations to locationson a digital map[C]. Proceedings of the 81st AnnualMeeting of the Transportation Research Board,Washington, DC. January 2002.
  • 9Pyo J S, Shin D H, Sung T K. Development of a mapmatching method using the multiple hypothesistechnique[C]. Proceedings of the IEEE IntelligentTransportation Systems,2001:23-27.
  • 10Alvarez G ,Ortega, et al. Trip destination predictionbased on past GPS log using a Hidden Markov Model[J].Expert Systems with Applications, 2010,37(12):8166-8171.

二级参考文献32

共引文献84

同被引文献17

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部