期刊文献+

KN方程的孤子解

The Soliton Solutions of KN Equation
下载PDF
导出
摘要 孤子方程是非线性科学领域中的一个重大研究课题,它是一门涉及多学科、多领域的研究领域,研究手段和方法很多,但是达布变换是一种经典而美妙的方法。本文根据KN方程的Lax对,借助KN方程的谱问题和规范变换,最终构造出一个含有多个参数的达布变换.通过此变换,求得KN方程的孤子解,并且讨论了n=1和n=2两种孤子解的特殊情况。 Soliton equations is an important research subject in the field of nonlinear science, it is a multi-disciplinary, multi field research field, many research means and methods, but the Darboux transformation is a method of classic and beautiful. In this paper, according to the KN equation by means of the Lax spectral problem and the canonical transformation, KN equation finally, construct a parameterization of the Darboux transformation. By this transformation, the soliton solutions of the KN equation are obtained, and discussed the special cases and two soliton solution.
出处 《科技通报》 北大核心 2016年第6期17-20,23,共5页 Bulletin of Science and Technology
基金 河南省现代产业体系动力机制研究(项目编号:142400410264)
关键词 KN方程 达布变换 孤子解 KN equation Darboux transformation soliton solutions
  • 相关文献

参考文献9

  • 1C W Cao,Y T Wu,X G Geng.J.Math.phys.1999,40(8):3948-3970.
  • 2C W Cao,X G Geng,H Y Wang.J.Math. Phys.2002,43(1):621-643.
  • 3Rogers C,Schief WK. Backlund and Darboux transforma-tions,geometry and modern applications in solition theory[M]. Cambridge:Cambridge University Press,1999.
  • 4X G Geng,Hon-Wah Tam.j.Phys,Soci.Japa.,1999,68(5):1508-1512.
  • 5Aihua Chen,Xuemei Li,chaos,solitons and Fractals.2006,27:43-49.
  • 6Xuemei Li,Aihua Chen.Physics Letters A. 2005,342:413-420.
  • 7X G Geng,HON-Wah TAM.Darboux Transformation andSoliton solutions for Generalized.
  • 8周振江,李志斌.Broer-Kaup系统的达布变换和新的精确解[J].物理学报,2003,52(2):262-266. 被引量:24
  • 9刘萍.Broer-Kaup系统的达布变换及其孤子解[J].数学物理学报(A辑),2006,26(B12):999-1007. 被引量:11

二级参考文献8

  • 1刘萍,张荣.广义偶合KdV孤子方程的达布变换及其精确解[J].洛阳师范学院学报,2005,24(5):1-5. 被引量:4
  • 2Wu T Y, Zhang J E, Cook L P, Roythurd V, Tulin M, eds. On Modelling a Nonlinear Long Wave. In: Math is for Solving Problems. SIAM, 1996. 233-241
  • 3Li Y S, Ma W X, Zhang J E. Darboux transformation of classical Boussinesq system and its new solutions. J Phys Lett A, 2000, 275: 60-66
  • 4Li Y S, Zhang J E. Darboux transformation of classical Boussinesq system and its multi-solition solutions. J Phys Lett A, 2001, 284: 253-258
  • 5Liu P, Zhang J S. Darboux transformation of Broer-Kaup system and its odd-soliton solutions. Journal of Southwest China Normal University(Natural Science), 2006, 31(5): 31-36
  • 6Geng X G, Tam H W. Darboux transformation and soliton solutions for generalized nonlinear Schrodinger equations. J Phys Soc Jpn, 1999, 68(5): 1508-1512
  • 7Fan E G. Darboux transformation and soliton-like solutions for the Gerdjikov-Ivanov equation. J Phys A: Math Gen, 2000, 33: 6925-6933
  • 8张金顺,李华夏.2+1维Levi孤子方程的Darboux变换[J].郑州大学学报(自然科学版),2001,33(3):13-17. 被引量:16

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部