期刊文献+

难处理低品位铜钴矿的微生物浸出 被引量:8

Bioleaching of refractory low grade copper-cobalt ore
下载PDF
导出
摘要 以赞比亚某典型难处理低品位氧化铜钴矿为研究对象,配入适量硫化铜钴矿,采用人工调配的高效微生物浸矿菌群对铜钴矿进行微生物浸出,同时分别与摇瓶酸浸、搅拌酸浸和柱浸进行了对比.结果表明,采用微生物浸出难处理铜钴矿,随着温度升高和时间延长,铜浸出率增大.浸出温度为40℃时,微生物浸出铜浸出率为90.7%,高于摇瓶酸浸和搅拌酸浸浸出结束时浸出率(69.4%-73.2%)以及柱浸结束时浸出率(约85%).由于微生物浸出群落对该难处理铜钴矿作用时间周期较长,适用于堆浸生产.细菌的存在使得铁离子不断的在二价与三价间循环,通过具有强氧化性的Fe3+与硫化矿物相互作用,使得矿物分解,提高浸出率. A typical refractory lowgrade copper- cobalt ore from Z ambia added a proper amount of sulfurized copper- cobalt ore was bioleached with a bacteria group of an artificial microbial leaching bacteria. The specimens were compared with sharked,stirred and column leached ones by acid. The results showed that the leaching efficiency of copper increases with temperature and time. The end leaching efficiency of copper is 90. 7% with bioleaching method at 40 ℃,which is higher than that( 69. 4% - 73. 2%) with sulfuric acid leaching method and that( about 85%) with column leaching. Owing to the longer operation time,it is suggested that a heap leaching process is favorable for the bioleaching method in an industrial practice. Bacteria make the Fe ions circulate between bivalent and trivalent ions.The authors believe that a strong oxidant Fe3 +can promote the ore decomposition and increase the leaching rate.
出处 《材料与冶金学报》 CAS 北大核心 2016年第2期92-96,共5页 Journal of Materials and Metallurgy
基金 国家自然基金项目(51374066 51304047)资助 辽宁省工业攻关项目和基金资助项目(2012223002 2014020037)
关键词 难处理 低品位铜钴矿 微生物浸出 refractory lowgrade copper-cobalt ores bacterial leaching
  • 相关文献

参考文献20

  • 1李海军,杨洪英,陈国宝,罗文杰.低品位硫铜钴矿生物浸出液中铜的分离[J].东北大学学报(自然科学版),2014,35(3):391-396. 被引量:7
  • 2刘大学,王云,袁朝新,郭持皓,李云,孙聪.某铜钴矿的硫酸还原浸出研究[J].有色金属(冶炼部分),2013(6):18-21. 被引量:36
  • 3Li Weitao. Bioleaching copper cobalt ore experimental studies [ D ]. Shenyang: Northeastern University, 2011.
  • 4Hiroyoshi N, K.itagawa H, Tsunekawa M. Effect of solution composition on the optimum redox potential for chalcopyrite leaching in sulfuric acid solution[J]. Hydrometallurgy, 2008, 91 (1 -4) : 144 -149.
  • 5Bevilaqua D, Acciari H A, Arena F A, et al. Utilization of electrochemival impendance spectroscopy for monitoring bomite ( Cus FeS4 ) oxidation by Acidithiobacillus ferrooxidans E J]- Minerals Engineering, 2009, 22 (3): 254 -262.
  • 6Vilcdez J, Yamada R, Inoue C. Effect of pH reduction and ferric ion addition on the leaching of chalcopyrite at thermophilic temperatures[J]. Hydrometallurgy, 2009, 96 (1 -2) : 62 -71.
  • 7Eisapour M, Keshtkar A, Moosavian M A, et al. Bioleaching of uranium in batch stirred tank reactor: Process optimization using Box - Behnken design [ J ]. Annals of Nuclear Energy 2013, 54 (4) : 245 -250.
  • 8AminM M, Elaassy I E, El -Feky M G, et al. Effect of mineral constituents in the bioleaching of uranium from uraniferous sedimentary rock samples, Southwestern Sinai, Egypt[J]. Journal of EnvironmentaI Radioactivity, 2014, 134 (8) : 76 -82.
  • 9Zokaei -Kadijani S, Safdari J, Mousavian M A, et al oxygen mass transfer coef cient and oxygen uptake stirred tank reactor for uranium ore bioleaching[J] Nuclear Energy, 2013, 53 (3): 280-287.
  • 10Study of rate in a Anna/s of Olson G J, Brierley J A, Brierley C L. Bioleaching review part B: Progress in bioleaching: applications of microbial processes by the minerals industries [ J ]. Appl Microbial Biotechnol, 2003, 63 (3) : 249 -257.

二级参考文献58

共引文献83

同被引文献128

引证文献8

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部