期刊文献+

液压机器人增压油箱的多目标优化方法研究(英文) 被引量:2

A novel multi-objective optimization method for the pressurized reservoir in hydraulic robotics
原文传递
导出
摘要 目的:增压油箱是提高液压机器人动力源功率密度的一个关键元件。高集成度的增压油箱设计涉及6个设计变量和6个性能指标,必须采用合适的方法进行多目标优化。创新点:1.提出一种在设计变量平面上投影性能曲面的多目标优化方法,通过设定性能阈值缩小可行解范围并获得决策;2.将增压油箱应用于液压机器人,提高液压机器人的功率密度和性能。方法:1.采用活塞-弹簧增压的原理来实现机器人液压系统增压,分析增压油箱的容量、质量和增压压力等性能,确定增压油箱设计为多目标优化问题。2.通过在设计变量平面上的投影曲面,分析增压油箱性能指标与设计变量之间的关系;将目标函数阈值引入设计限制条件,通过控制待优化的指标缩小可行域,获得油箱设计的最终解。3.按优化设计参数加工油箱样机,并在液压机器人动力源上进行测试。结论:1.增压油箱优化结果表明本文提出的设计方法可帮助设计者获得所需的最优解;2.增压油箱样机的应用测试结果表明所研制的增压油箱在液压机器人系统中运行可靠。 The pressurized reservoir is a closed hydraulic tank which plays a significant role in enhancing the capabilities of hydraulic driven robotics. The spring pressurized reservoir adopted in this paper requires comprehensive performance, such as weight, size, fluid volume, and pressure, which is hard to balance. A novel interactive multi-objective optimization approach, the feasible space tightening method, is proposed, which is efficient in solving complicated engineering design problems where multiple objectives are determined by multiple design variables. This method provides sufficient information to the designer by visualizing the performance trends within the feasible space as well as its relationship with the design variables. A step towards the final solution could be made by raising the threshold on performance indicators interactively, so that the feasible space is reduced and the remaining solutions are more preferred by the designer. With the help of this new method, the preferred solution of a spring pressurized reservoir is found. Practicability and efficiency are demonstrated in the optimal design process, where the solution is determined within four rounds of interaction between the designer and the optimization program. Tests on the de- signed prototype show good results.
出处 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2016年第6期454-467,共14页 浙江大学学报(英文版)A辑(应用物理与工程)
基金 supported by the National Natural Science Foundation of China(No.51275450) the Fundamental Research Funds for the Central Universities(No.2013FZA4004) the Science Fund for Creative Research Groups of National Natural Science Foundation of China(No.51521064)
关键词 液压机器人 多目标优化 交互式决策 增压油箱 Hydraulic driven robots, Multi-objective optimal design, Interactive decision-making, Pressurized reservoir
  • 相关文献

参考文献22

  • 1Amundson, K., Raade, J., Harding, N., et al., 2006. Devel- opment of hybrid hydraulic-electric power units for field and service robots. Advanced Robotics, 20(9): 1015-1034 http://dx.doi.org/10.1163/156855306778394058.
  • 2Blasco, X., Herrero, J., Sanchis, J., et al., 2008. A new graph- ical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization. Infor- mation Sciences, 178(20):3908-3924. http://dx.doi.org/10, 1 016/j.ins.2008.06.010.
  • 3Branke, J., Greco, S., Slowinski, R., et aL, 2015. Learning value functions in interactive evolutionary multiobjec- tive optimization. IEEE Transactions on Evolutionary Computation, 19(1):88-102. http://dx.doi.org/10.1109/TEVC.2014.2303783.
  • 4Branke, J., Corrente, S., Greco, S., et al., 2016. Using Cho- quet integral as preference model in interactive evolu- tionary multiobjective optimization. European Journal of Operational Research, 250(3):884-901. http://dx.doi.org/10.1016/j.ejor.2015.10.027.
  • 5Chaudhuri, S., Deb, K., 2010. An interactive evolutionary multi-objective optimization and decision making proce- dure. Applied Soft Computing, 10(2):496-511. http ://dx.doi.org/10.1016/j .asoc.2009.08.019.
  • 6Coello, C.A.C., 2000. Handling preferences in evolutionary multiobjective optimization: a survey. Proceedings of the Congress on Evolutionary Computation, La Jolla, CA, USA, p.30-37. http://dx.doi.org/10.1109/CEC.2000.87027.
  • 72 Deb, K., Pratap, A., Agarwal, S., et aL, 2002. A fast and elit- ist multiobjective genetic algorithm: NSGA-Ⅱ. IEEE Transactions on Evolutionary Computation, 6(2):182- 197. http ://dx.doi.org/10.1109/4235.996017.
  • 8Jacobsen, S., 2007. On the development of XOS, a powerful exoskeletal robot. IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA.
  • 9Klamroth, K., Miettinen, K., 2008. Integrating approximation and interactive decision making in multicriteria optimi- zation. Operations Research, 56(1):222-234. http://dx .doi.org/10.1287/opre. 1070.0425.
  • 10Kollat, J.B., Reed, P., 2007. A framework for visually inter- active decision-making and design using evolutionary multi-objective optimization (VIDEO). Environmental Modelling & Software, 22(12): 1691-1704. http ://dx .doi.org/10.1016/j.envsoft.2007.02.001.

同被引文献35

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部