期刊文献+

挤压温度对Mg-6Zn-1Mn-4Sn-0.5Y镁合金组织和性能的影响(英文) 被引量:5

Effect of Extrusion Temperatures on Microstructures and Mechanical Properties of Mg-6Zn-1Mn-4Sn-0.5Y Alloy
原文传递
导出
摘要 通过光学显微镜(OM),X射线衍射(XRD),扫描电子显微镜(SEM),电子背散射衍射(EBSD)以及拉伸试验对360和420℃挤压的Mg-6Zn-1Mn-4Sn-0.5Y变形镁合金的组织和性能进行了研究。结果表明,合金铸态和时效态的相组成为α-Mg,Mn,Mg_7Zn_3,Mg_2Sn,和MgSnY相。挤压温度从360℃增加到420℃,动态再结晶完成,晶粒长大,合金的屈服强度、抗拉强度以及延伸率分别由259 MPa,350 MPa和18.3%降低至239 MPa,332 MPa和12.5%。理论计算和拉伸试验结果表明,细晶强化和固溶强化对合金屈服强度的增加产生决定性影响。 The microstructural evolution and the mechanical properties of Mg-6Zn-1Mn-4Sn-0.5Y wrought alloy extruded at 360 and 420 °C were investigated by optical microscopy(OM), X-ray diffraction(XRD), scanning electron microscopy(SEM), electron back scattered diffraction(EBSD) and tensile test. The results show that the phase compositions of as-cast and extruded alloys consist of α-Mg, Mn, Mg7Zn3, Mg2Sn, and MgSnY phases. As the extrusion temperature increases from 360 °C to 420 °C, dynamic recrystallization completes and grain growth occurs. The yield strength, the ultimate tensile strength and the elongation decrease from 259 MPa, 350 MPa and 18.3% to 239 MPa, 332 MPa and 12.5%, respectively. The theoretical calculations combined with the experimental results reveal that fine grain strengthening and solid solution strengthening play the dominating role in the enhancement of yield strength.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2016年第5期1111-1116,共6页 Rare Metal Materials and Engineering
基金 National Great Theoretic Research Project(2013CB632200) International Cooperation Project(2010DFR50010) Chongqing Science & Technology Support Project(CSTC2013jcyjC60001)
关键词 Mg-6Zn-1Mn-4Sn-0.5Y镁合金 挤压温度 相组成 力学性能 Mg-6Zn-1Mn-4Sn-0.5Y alloy extrusion temperatures phase compositions mechanical property
  • 相关文献

参考文献22

  • 1Li J L, Chen R S, Ma Y Q et al. Journal of Magnesium and Alloys[J], 2013, 1(1): 64.
  • 2Qi F G, Zhang D F, Lan W et al. Rare Metal Materials and Engineering[J], 2013, 42(1): 115 (in Chinese).
  • 3Mao P L, Yu J C, Liu Z et al. Journal of Magnesium and Alloys[J], 2013, 1(1): 64.
  • 4Mendis C L, Oh-ishi K, Ohkubo T et al. Materials Science and EngineeringA[J], 2012, 553:9.
  • 5Xie S Y, Peng X D, Li J C et al. Rare Metal Materials and Engineering[J], 2014, 43(1): 52 (in Chinese).
  • 6Zhu Q, Fang C F, Li N Pet al. Rare Metal Materials and Engineering[J], 2013, 42(4): 771 (in Chinese) M.
  • 7endis C L, Oh-ishi K, Kawamura Yet al. Acta Materialia[J], 2009, 57(3): 749.
  • 8Yoon D J, Lee S, Lim S Jet al. Journal of Mechanical Science and Technology[J], 2010, 24(1): 131.
  • 9Xu S W, Oh-ishi K, Kamado Set al. Scripta Materialia[J], 2011, 65(10): 875.
  • 10Zhang L, Gong M, Peng L M. Materials Science and EngineeringA[J], 2013, 565:262.

同被引文献29

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部