期刊文献+

针穿刺软组织变形预测模型研究 被引量:3

Study on Prediction Model of Soft Tissue Deformation during Needle Insertion
原文传递
导出
摘要 配制了与人体软组织性能相近的水凝胶人造软组织。采用由光学平台、相机及支架、相机光源等组成的图像采集设备,记录嵌入在软组织内标识物的连续位移,研究穿刺过程中软组织的变形规律。在分析标识物在X方向和Y方向上位移的基础上,基于反向传播(BP)神经网络,建立标识物在Y方向上的神经网络模型。通过与实验数据对比,神经网络模型的拟合度在95%以上,有效数据的最大相对误差控制在30%,最大绝对误差为0.8mm,能够较好地定量预测穿刺过程中软组织的变形。研究结果可有效提高软组织针穿刺靶点精度。 Polyvinyl alcohol (PVA) hydrogel was made for simulating human's soft tissue in our experiment. The image acquisition device is composed of an optical platform, a camera and its bracket and a light source. In order to study the law of soft tissue deformation under flexible needle insertion, markers were embedded into the soft tissue and their displacements were recorded. Based on the analysis of displacements of markers in X direction and Y direction, back propagation (BP) neural network was employed to model the displacement of Y direction for the markers. Compared to the experimental data, fitting degree of the neural network model was above 95% the maximum relative error for valid data was limited to 30 %, and the maximum absolute error was 0.8 mm. The BP neural network model was beneficial for predicting soft tissue deformation quantitatively. The results showed that the model could effectively improve the accuracy of flexible needle insertion into soft tissue.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2016年第3期442-447,共6页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(51165040) 青海省自然科学基金项目(2015-ZJ-906)
关键词 柔性针穿刺 软组织变形 聚乙烯醇水凝胶 反向传播神经网络 flexible needle insertion soft tissue deformation polyvinyl alcohol hydrogel back propagation neural network
  • 相关文献

参考文献12

  • 1MISRA S, MACURA K J, RAMESH K T, et al. The im- portance of organ geometry and boundary constraints for plan- ning of medical interventions [J]. Med Eng Phys, 2009, 31 (2) : 195-206.
  • 2FAZAL I,KARSITI M N. Needle insertion simulation forces v/s experimental forces for haptic feedback device [C]// 2009 IEEE Student Conference on Research and Development (SCORED). UPM Serdang, Malaysia.. 2009: 128-131.
  • 3GLOZMAN D, SHOHAM M. Flexible needle steering for percutaneous therapies [J]. Comput Aided Surg, 2006, 11 (4) : 194-201.
  • 4高德东,高宜朋,郑浩峻.针穿刺软组织变形有限元仿真[J].计算机辅助设计与图形学学报,2009,21(11):1601-1605. 被引量:8
  • 5姜杉,刘晓艳,白松,杨志永.基于势能场的针刺软组织轨迹规划[J].生物医学工程学杂志,2010,27(4):790-794. 被引量:3
  • 6赵新刚,杨唐文,韩建达,徐卫良.机器人辅助针穿刺技术[J].科学通报,2013,58(S2):20-27. 被引量:8
  • 7邓新晶,刘峰.关于进口穿刺针“G”单位的讨论[J].医疗设备信息,2006,21(11):99-99. 被引量:3
  • 8DIMAIO S P, SALCUDEAN S E. Interactive simulation of needle insertion models [J]. IEEE Trans Biomed Eng, 2005, 52(7), 1167-1179.
  • 9CHANTHASOPEEPHAN T, DESAI J P, LAU A C W. Modeling soft-tissue deformation prior to cutting for surgical simulation: finite element analysis and study of cutting pa- rameters. [J]. IEEE Trans Biomed Eng, 2007, 54(3): 349- 359.
  • 10邹方林,冷晟,廉鹏飞,晁翠华.BP神经网络合理隐结点数确定的改进方法[J].系统仿真技术,2014,10(2):154-158. 被引量:3

二级参考文献83

共引文献337

同被引文献31

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部