期刊文献+

下肢外骨骼机器人控制的脑电感知方法研究

EEG Sensing Method Study for Lower Extremity Exoskeleton Robot Control
下载PDF
导出
摘要 将外骨骼机器人技术与BCI系统结合起来,使人体具有了外骨骼机器人的一系列优良特性,同时使外骨骼机器人具备了人体的智能;首先,对外骨骼机器人技术与BCI技术的融合进行了可行性分析,说明了该方法的可行性;其次,通过实验采集了6种想象运动的脑电信号,选取了C3、C4通道的脑电信号,并对其进行了去噪处理;然后,对经过预处理的六种想象运动的脑电信号通过小波变换进行了分解,提取了包括小波分解系数和能量系数的脑电信号小波特征;最后,针对所提取的小波特征,采用了最小二乘支持向量机对这6种想象运动模式进行分类处理。 Combining the exoskeleton robotics with the BCI system can make the human body not only has series of excellent features of the exoskeleton robot,but also the exoskeleton robot can have human intelligence.First of all,the feasibility of the exoskeleton robot tech-nology integrates with the BCI technology was analyzed.Secondly,six motion patterns of EEG method which was used for the control of exo-skeleton robot were conducted and the EEG signals of six kinds of imagined movement were collected in the experiment;C3 and C4 channels of EEG signals were selected.Thirdly,the signals which have been pre processed via Wavelet transform were decomposed,and the wavelet coefficients and energy coefficients for the feature extraction were extracted.Finally,the method of LS-SVM was used to classify and out-put the six imagined movement patterns.
出处 《计算机测量与控制》 2016年第6期95-97,109,共4页 Computer Measurement &Control
基金 "视听觉信息的认知计算"重大研究计划项目(91420301) 国家高技术研究发展计划(863计划)项目(SS2015AA041002)
关键词 外骨骼机器人 小波变换 最小二乘支持向量机 EEG lower extremity exoskeleton robot EEG wavelet transformation LS-SVM
  • 相关文献

参考文献3

二级参考文献27

  • 1归丽华,杨智勇,顾文锦,张远山,杨秀霞.能量辅助骨骼服NAEIES的开发[J].海军航空工程学院学报,2007,22(4):467-470. 被引量:27
  • 2Koles Z J. The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG[J].Electroencephalography and Clinical Neurophysiology , 1991,79(6) :440 - 447,.
  • 3Muller-Gerking J, Pfurtscheller G, Flyvbjerg H. Designing optimal spatial filters for single-trial EEG classification in a movement task [ J ]. Clinical Neurophysiology, 1999, 110 (5) :787 - 798.
  • 4Ramoser H, Miiller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement [ J ]. IEEE Transactions on Rehabilitation Engineering, 2000,8 (4) : 441 - 446.
  • 5Novi Q, Guan C, Dat T H, et al. Sub-band common spatial pattern ( SBCSP ) for brain-computer interface [ C ]//3rd International IEEE/EMBS Conference on Neural Engineering. [S. 1. ] : IEEE, 2007 : 204 - 207.
  • 6Li Y, Gao X, Liu H, et al. Classification of single-trial electroencephalogram during finger movement [ J 3. IEEE Transactions on Biomedical Engineering, 2004,51 (6) : 1019 - 1025.
  • 7Chang C C, Lin C J. LIBSVM: a library for support vector machines[ EB/OL ]. [ 2009 - 04 - 17 ]. http://www, csie. ntu. edu. tw/-cjlin/libsvm.
  • 8Schlogl A, Keinrath C, Scherer R, et al. Information transfer of an EEG-based brain computer interface[ C]//1st International IEEE/EMBS Conference on Neural Engineering. [S. l. ] : IEEE, 2003 : 164 - 173.
  • 9Schlogl A, Neuper C, Pfurtscheller G. Estimating the mutual information of an EEG-based brain-computer interface[J].Biomed Technik, 2002,47(1/2) :3 - 8.
  • 10B.J. Makinson, General Electric CO.. Research and Development Prototy-pe for Machine Augmentation of Human Strength and Endurance,Hardi-man I Project [R],General Electric Report S-71-1056, Schenectady,NY, 1971.

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部