期刊文献+

聚甲基丙烯酸酯类运动单元结构与玻璃化转变温度的关系 被引量:2

Structure-Property Relationship of Glass Transition Temperatures and Motion Units for Polymethacrylates
下载PDF
导出
摘要 玻璃化转变温度(Tg)是非晶态高聚物材料的一项很重要的参数。文中采用多元线性回归方法建立了56种聚甲基丙烯酸酯类高聚物Tg的结构-性能定量关系(QSPR)模型。模型所用参数从聚甲基丙烯酸酯类主链包含10个重复单元的运动单元计算得到。模型训练集(包含36种聚甲基丙烯酸酯类高聚物)的相关系数为0.971,标准误差为15.731K;模型测试集(包含20种聚合物)相关系数为0.946,均方根误差(rms)为17.286K;整个数据集(56种聚合物)相对误差为4.065%。结果表明,本文所得模型对聚甲基丙烯酸酯类高聚物Tg有着较强的预测能力。因此从高分子主链段运动单元得到分子参数预测Tg是可行的。 The glass transition temperature( Tg) is the most important parameter for amorphous polymer material. A quantitative structure-property relationship( QSPR) of glass transition temperatures of 56 kinds of polymethacrylates was obtained by stepwise multiple linear regression( MLR) analysis. Three molecular descriptors were calculated from the motion units of polymer backbones comprised of 10 repeating units to develop the model. The training set( including 36polymethacrylates) of the model has a correlation coefficient( R) of 0. 971 and standard error of estimation of 15. 731 K. The external test set of 20 polymethacrylates possesses a correlation coefficient of 0. 946 and a root mean square( rms) error of 17. 286 K. The mean relative error for the whole data set( 56 polymethacrylates) is 4. 065%. The results indicate the ability of the present model to estimate the glass transition temperatures for polymethacrylates. The feasibility of applying the chain segments of motion units as representative structures of polymers to calculate molecular descriptors for the prediction of Tghas been demonstrated.
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2016年第6期49-53,共5页 Polymer Materials Science & Engineering
基金 国家自然科学基金资助项目(21472040) 湖南省自然科学基金资助项目(12JJ6011)
关键词 玻璃化转变温度 运动单元 聚甲基丙烯酸酯 结构-性能关系 glass transition temperature motion units polymethacrylates structure-property relationship
  • 相关文献

参考文献2

二级参考文献24

  • 1Van Krevelen D W.Properties of Polymer.3rd ed.New York:Elsevier,1990:34-159.
  • 2Bicerano J Prediction of Polymer Properties.New York:Marcel Dekker Inc,1993:1-189.
  • 3Yeong S K,Jae H K,Jung S K.J.Chem.Inf.Comput.Sci,2002,42(1):75-81.
  • 4Chenzhong Cao,Yuanbin Lin.J.Chem.Inf.Comput.Sci,2003,43(2),643-650.
  • 5Jason A M,Robert E J,Phillip H,Cary F C.J.Chem.Inf.Comput.Sci,2004,44(3):912-920.
  • 6Errol F M,Matthew J S.J.Chem.Inf.Comput.Sci,2003,43(2):545-553.
  • 7Jane D D,Kjeld R,Svava O J.J.Mol.Model,2002,8(9):277-289.
  • 8陈念贻(CHENNian-yi) 钦佩(QINPei) 陈瑞亮(CHENRui-liang).模式识别方法在化学化工中的应用(Applications of Pattern Recognitionin Chemistry and Chemical Industry)[M].北京:科学出版社(Beijing:Science Press),2000.23-50.
  • 9Brandrup J.Polymer Handbook (Ⅵ).4th ed.New York:Wiley,1999:198-205.
  • 10何曼君(HEMan-jun) 陈维孝(CHENWei-xiao) 董西侠(DONGXi-xia).高分子物理(Physical of Macromolecules)[M].上海:复旦大学出版社(Shanghai:Fudan University Press),2001.34-36.

共引文献17

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部