期刊文献+

黎曼流形上漂移薛定谔算子的加权特征值估计

Inequalities for weighted eigenvalues of the drifting Schrodinger operator on Riemannian manifolds
下载PDF
导出
摘要 研究了黎曼流形上漂移薛定谔算子-Δ_φ+V的加权特征值估计问题,利用试验函数方法得到了特征值的杨洪仓型不等式,同时得到了高阶特征值的上界估计,将已有文献结果推广到更一般的情形. The Dirichlet weighted eigenvalue problem of the operator -Δφ+V on compact Riemannian manifolds is investigated,where Δφis the drifting Laplacian operator on compact Riemannian manifolds.A yang-type inequality of this problem is established.Estimates for upper bounds of higher order eigenvalues are also obtained.
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2016年第2期35-39,共5页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家青年自然科学基金资助项目(11401531) 江苏省高校自然科学基金资助项目(14KJD110004)
关键词 黎曼流形 特征值估计 漂移拉普拉斯 Riemannian manifolds eigenvalue estimates drifting Laplacian
  • 相关文献

参考文献10

  • 1PAYNE L E,POLYA G,WEINBERGER H F.On the ratio of consecutive eigenvalues[J].J Math and Phis,1956,35:289-298.
  • 2HILE G N,PROTTER M H.Inequalities for eigenvalues of the Laplacian[J].Indiana Univ Math J,1980,29:523-538.
  • 3ASHBAUGH M S.Universal eigenvalue bounds of Payne-Polya-Weinberger[J].Proc Indian Acad Sci,2002,112:3-30.
  • 4CHENG Q M,YANG H C.Inequalities for eigenvalues of Laplacian on domains and compact hypersurfaces in complex projective spaces[J].J Math Soc Japan,2006,58:545-561.
  • 5EVANS II.Some geometric bounds on eigenvalue gaps[J].Comm in Part Diff Eqns,1993,18:179-198.
  • 6MA L,LIU B Y.Convex eigenfunction of a drifting Laplacian operator and the fundamental gap[J].Pacific J Math,2009,240:343-361.
  • 7MA L,LIU B Y.Convexity o? the first eigenfunction of the drifting Laplacian operator and its applica-tions[J].New York J Math,2008,14:393-401.
  • 8MA L,DU S H.Extension of Reilly formula with applications to eigenvalue estimates for drifting Laplacians[J].C R Math Acad Sci Paris,2010,348:1203-1206.
  • 9XIA C Y,XU H W.Inequalities for eigenvalues of the drifting Laplacian on Riemannian manifolds[J].Ann Glob Anal Geom,2014,45:155-166.
  • 10FRIEDRICHS K O.Spectral theory of operators in Hilbert space[M].New York:Springer Verlag,1980:143-163.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部