期刊文献+

解析函数空间上的有限秩加权复合算子

Finite rank weighted composition operators on analytic function space
下载PDF
导出
摘要 给出了解析函数再生核巴拿赫空间上有限秩加权复合算子的统一刻画.主要结论表明解析函数再生核巴拿赫空间上的有限秩加权复合算子或者是零算子或者是一秩算子. A unified characterization of finite rank weighted composition operators on reproducing kernel Banach space of analytic functions is given.The main result shows that a weighted composition operator on reproducing kernel Banach space of analytic functions is finite rank if and only if it is a zero operator or a rank-one operator.
作者 赵连阔
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2016年第2期155-156,共2页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(11201274 11471189)
关键词 解析函数空间 加权复合算子 有限秩 analytic function space weighted composition operator finite rank
  • 相关文献

参考文献9

  • 1ARONSZAJN N.Theory of reproducing kernels[J],Trans Amer Math Soc,1950,68:337-404.
  • 2RICHTER S.Invariant subspaces in Banach spaces of analytic functions[J].Trans Amer Math Soc,1987,304:585-616.
  • 3CONTRERAS M D,HERNANDEZ-DIAZ A G.Weighted composition operators in weighted Banach spaces of analytic functions[J].J Austral Math Soc,2000,69(1):41-60.
  • 4MONTES-RODRIGUEZ A.Weighed composition operators on weighted Banach spaces of analytic functions[J].J London Math Soc,2000,61:872-884.
  • 5LI StSTEVI DS.Weighted composition operators from Bergman-type spaces into Bloch spaces[J].Proc Indian Acad Sci Math Sci,2007,117:371-385.
  • 6OHNO St STROETHOFF K,ZHAO R.Weighted composition operators between Bloch-type spaces[J].Rocky Mountain J Math,2003,33:191-215.
  • 7WOLF E.Weighted composition operators between weighted Bloch type spaces[J].Bull Soc Roy Sci Liege,2011,80:806-816.
  • 8冯丽霞.Dirichlet空间上Toeplitz算子的乘积[J].东北师大学报(自然科学版),2015,47(4):42-45. 被引量:1
  • 9洪勇.含零阶齐次核的Hilbert型奇异重积分算子的有界性及范数[J].东北师大学报(自然科学版),2014,46(1):48-54. 被引量:1

二级参考文献15

  • 1贾美柱,赵长健.关于两个新Hilbert积分不等式[J].数学杂志,2005,25(5):533-536. 被引量:2
  • 2HARDY G H,UTTLWOOD,E,POLY A G.Inequalities[M].Cambridge:Cambridge University Press,1934:255-284.
  • 3BICHENG YANG,MARIO KRNIC.Hilbert-Type inequalities and related operators with homogeneous kernel of degree 0[J].Mathematical Inequalities and Applications,2010,13(4):817-839.
  • 4BMETIC I,PECARIC J.Generalization of Hilbert's integral inequalities[J].Mathematical Inequalities and Applications,2004,7(2):199-205.
  • 5LEVIN V.On the tow-parameter extension and analogue of Hilbert’s inequality[J].J London Math Soc,1936,11(1):119-124.
  • 6菲赫金哥尔茨.微积分学教程(第三卷第二分册)[M].北京:人民教育出版社,1959:407-409.
  • 7CHEN Y,NGUYEN Q D. Toeplitz and Hankel operators with symbols on Dirichlet space[J]. J Math Anal Appl,2010,369(1):368-376.
  • 8LEE Y_ Algebraic properties of Toeplitz operators on the Dirichlet space[J]. J Math Anal Appl,2007,329(2) : 1316-1329.
  • 9LEE Y. Finite sums of Toeplitz products on the Dirichlet space[J]. J Math Anal Appl,2009,357(2) :504-515.
  • 10LEE Y,ZHU K. Sums of products of Toeplitz and Hankel operators on the Dirichlet space[J]. Intergr Equ Oper Theory,2011,71(2):275-302.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部