期刊文献+

稀疏函数型回归模型变量选择及实证分析 被引量:1

Variable Selection for Sparse Functional Regression Model and an Empirical Analysis
原文传递
导出
摘要 传统函数型回归模型变量选择方法,忽略了对稀疏函数型数据的讨论.提出了稀疏函数型数据情形下函数型回归模型的变量选择方法,基于条件期望对稀疏函数型自变量进行函数型主成分分析,并以估计的正交特征函数作为基函数对模型进行展开.这种方法可以有效解决对稀疏函数型变量的选择.作为实证分析,选取2002年到2011年全国34个气象观测站的年降水量,月度平均气温,光照时长,湿度,最高气温和最低气温数据,分别比较讨论了密集和稀疏情形下,原始样本和Bootstrap样本的函数型回归模型变量选择的结果,结果显示新方法具有较好的选择效果. The traditional variable selection methods for functional regression ignore the discussion of sparse functional data.This paper proposes the variable selection methods for the case of sparse functional regression.We attempt to make functional principal analysis for the sparse functional independent variable through conditional expectation,We make the basis function expansion for the model by the estimation of orthogonal eigenfunction.This method can solve the problem of sparse functional variable selection.As the empirical analysis,we select data of 34 weather stations from 2002 to 2012:the annual total precipitation,monthly observed average temperature,time of daylight,average humidity,maximum temperature and minimum temperature.We make a discussion respectively for the result of variable selection methods for functional regression under the dense condition and sparse condition for full sample and bootstrap samples.The result display our method has a good selection result.
出处 《数学的实践与认识》 北大核心 2016年第11期171-177,共7页 Mathematics in Practice and Theory
基金 中国人民大学科学研究基金(中央高校基本科研业务费专项资金资助)项目<函数型数据分析方法应用及改进>(14XNH104)
关键词 稀疏 函数型变量 标量 基函数展开 惩罚函数 sparse functional variable scalar basis function expansion penalized function
  • 相关文献

参考文献13

  • 1Ramsay J O.Functional data analysis[M].John Wiley Sons,Inc,2005.
  • 2黄乐乐,王惠文,朱嘉.连续谱数据的函数型主成分回归[J].北京航空航天大学学报,2014,40(6):792-796. 被引量:2
  • 3Yao F,Miiller H,Wang J.Functional data analysis for sparse longitudinal data[J].J Am Statist Assoc,2005,100(470):577-590.
  • 4Minh H Q,Niyogi P,Yao Y.Computational Learning Theory[M].Springer Berlin Heidelberg,2006:154-168.
  • 5Simon N,Friedman J,Hastie T,Tibshirani R.A sparse-Group Lasso[J].Journal of Computational and Graphical Statistics,2013,22(2):231-245.
  • 6Fan J,Li R.Variable selection via nonconcave penalized likelihood and its oracle properties[J].Journal of the American Statistical Association,2001,96(456):1348-1360.
  • 7Wang H,Li B,Leng C.Shrinkage tuning parameter selection with a diverging number of parameters[J].Journal of the Royal Statistical Society:Series B(Statistical Methodology),2009,71(3):671-683.
  • 8Friedman J,Hastie T,Hofling H,et al.Pathwise coordinate optimization[J].The Annals of Applied Statistics,2007,1(2):302-332.
  • 9Wu T T,Lange K.Coordinate descent algorithms for lasso penalized regression[J].The Annals of Applied Statistics,2008,2(1):224-244.
  • 10Yuan M,Lin Y.Model selection and estimation in regression with grouped variables[J].Journal of the Royal Statistical Society:Series B(Statistical Methodology),2006,68(1):49-67.

二级参考文献39

共引文献10

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部